[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a119900 -id:a119900
     Sort: relevance | references | number | modified | created      Format: long | short | data
F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).
(Formerly M2741 N1101)
+10
428
0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
OFFSET
0,3
COMMENTS
Apart from initial term, same as A088305.
Second column of array A102310 and of A028412.
Numbers k such that 5*k^2 + 4 is a square. - Gregory V. Richardson, Oct 13 2002
Apart from initial terms, also Pisot sequences E(3,8), P(3,8), T(3,8). See A008776 for definitions of Pisot sequences.
Binomial transform of A000045. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 in the path graph P_4 from one end to the other one. Example: a(2)=3 because in the path ABCD we have ABABCD, ABCBCD and ABCDCD. - Emeric Deutsch, Apr 02 2004
Simplest example of a second-order recurrence with the sixth term a square.
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Lekraj Beedassy, Jun 11 2004
a(n) (for n > 0) is the smallest positive integer that cannot be created by summing at most n values chosen among the previous terms (with repeats allowed). - Andrew Weimholt, Jul 20 2004
All nonnegative integer solutions of Pell equation b(n)^2 - 5*a(n)^2 = +4 together with b(n) = A005248(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
a(n+1) is a Chebyshev transform of 3^n (A000244), where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
a(n) is the number of distinct products of matrices A, B, C, in (A+B+C)^n where commutator [A,B] = 0 but C does not commute with A or B. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Number of binary words with exactly k-1 strictly increasing runs. Example: a(3)=F(6)=8 because we have 0|0,1|0,1|1,0|01,01|0,1|01,01|1 and 01|01. Column sums of A119900. - Emeric Deutsch, Jul 23 2006
See Table 1 on page 411 of Lukovits and Janezic paper. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5) a(n) + sqrt(5 a(n)^2 + 4))/2) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
[1,3,8,21,55,144,...] is the Hankel transform of [1,1,4,17,75,339,1558,...](see A026378). - Philippe Deléham, Apr 13 2007
The Diophantine equation a(n) = m has a solution (for m >= 1) if and only if floor(arcsinh(sqrt(5)*m/2)/log(phi)) <> floor(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130259(m) = A130260(m). - Hieronymus Fischer, May 25 2007
a(n+1) = AB^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 1=`1`, 3=`10`, 8=`100`, 21=`1000`, ..., in Wythoff code.
Equals row sums of triangles A140069, A140736 and A140737. - Gary W. Adamson, May 25 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of width n (width(alpha) = max(Im(alpha))). Equivalently, it is the number of idempotent order-preserving full transformations (of an n-element chain). - Abdullahi Umar, Sep 08 2008
a(n) is the number of ways that a string of 0,1 and 2 of size (n-1) can be arranged with no 12-pairs. - Udita Katugampola, Sep 24 2008
Starting with offset 1 = row sums of triangle A175011. - Gary W. Adamson, Apr 03 2010
As a fraction: 1/71 = 0.01408450... or 1/9701 = 0.0001030821.... - Mark Dols, May 18 2010
Sum of the products of the elements in the compositions of n (example for n=3: the compositions are 1+1+1, 1+2, 2+1, and 3; a(3) = 1*1*1 + 1*2 + 2*1 + 3 = 8). - Dylon Hamilton, Jun 20 2010, Geoffrey Critzer, Joerg Arndt, Dec 06 2010
a(n) relates to regular polygons with even numbers of edges such that Product_{k=1..(n-2)/2} (1 + 4*cos^2 k*Pi/n) = even-indexed Fibonacci numbers with a(n) relating to the 2*n-gons. The constants as products = roots to even-indexed rows of triangle A152063. For example: a(5) = 55 satisfies the product formula relating to the 10-gon. - Gary W. Adamson, Aug 15 2010
Alternatively, product of roots to x^4 - 12x^3 + 51x^2 - 90x + 55, (10th row of triangle A152063) = (4.618...)*(3.618...)*(2.381...)*(1.381...) = 55. - Gary W. Adamson, Aug 15 2010
a(n) is the number of generalized compositions of n when there are i different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Starting with "1" = row sums of triangle A180339, and eigensequence of triangle A137710. - Gary W. Adamson, Aug 28 2010
a(2) = 3 is the only prime.
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n > 0, with exactly 2 elements of each rank level above 0. (Uniform used in the sense of Retakh, Serconek, and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 13 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 1. - Michel Lagneau, Feb 01 2014
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2}. - Milan Janjic, Jan 25 2015
With a(0) = 0, for n > 1, a(n) is the smallest number not already in the sequence such that a(n)^2 - a(n-1)^2 is a Fibonacci number. - Derek Orr, Jun 08 2015
Let T be the tree generated by these rules: 0 is in T, and if p is in T, then p + 1 is in T and x*p is in T and y*p is in T. The n-th generation of T consists of A001906(n) polynomials, for n >= 0. - Clark Kimberling, Nov 24 2015
For n > 0, a(n) = exactly the maximum area of a quadrilateral with sides in order of lengths F(n), F(n), L(n), and L(n) with L(n)=A000032(n). - J. M. Bergot, Jan 20 2016
a(n) = twice the area of a triangle with vertices at (L(n+1), L(n+2)), (F(n+1), F(n+1)), and (L(n+2), L(n+1)), with L(n)=A000032(n). - J. M. Bergot, Apr 20 2016
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a sequence of n triangles, where adjacent triangles share an edge. - Kevin Long, May 07 2018
a(n) is the number of ways to partition [n] such that each block is a run of consecutive numbers, and each block has a fixed point, e.g., for n=3, 12|3 with 1 and 3 as fixed points is valid, but 13|2 is not valid as 1 and 3 do not form a run. Consequently, a(n) also counts the spanning trees of the graph given by taking a path with n vertices and adding another vertex adjacent to all of them. - Kevin Long, May 11 2018
From Wolfdieter Lang, May 31 2018: (Start)
The preceding comment can be paraphrased as follows. a(n) is the row sum of the array A305309 for n >= 1. The array A305309(n, k) gives the sum of the products of the block lengths of the set partition of [n] := {1, 2, ..., n} with A048996(n, k) blocks of consecutive numbers, corresponding to the compositions obtained from the k-th partition of n in Abramowitz-Stegun order. See the comments and examples at A305309.
{a(n)} also gives the infinite sequence of nonnegative numbers k for which k * ||k*phi|| < 1/sqrt(5), where the irrational number phi = A001622 (golden section), and ||x|| is the absolute value of the difference between x and the nearest integer. See, e.g., the Havil reference, pp. 171-172. (End)
This Chebyshev sequence a(n) = S(n-1, 3) (see a formula below) is related to the bisection of Fibonacci sequences {F(a,b;n)}_{n>=0} with input F(a,b;0) = a and F(a,b;1) = b, by F(a,b;2*k) = (a+b)*S(k-1, 3) - a*S(k-2, 3) and F(a,b;2*k+1) = b*S(k, 3) + (a-b)*S(k-1, 3), for k >= 0, and S(-2, 3) = -1. Proof via the o.g.f.s GFeven(a,b,t) = (a - t*(2*a-b))/(1 - 3*t + t^2) and GFodd(a,b,t) = (b + t*(a-b))/(1 - 3*t + t^2). The special case a = 0, b = 1 gives back F(2*k) = S(k-1, 3) = a(k). - Wolfdieter Lang, Jun 07 2019
a(n) is the number of tilings of two n X 1 rectangles joined orthogonally at a common end-square (so to have 2n-1 squares in a right-angle V shape) with only 1 X 1 and 2 X 1 tiles. This is a consequence of F(2n) = F(n+1)*F(n) + F(n)*F(n-1). - Nathaniel Gregg, Oct 10 2021
These are the denominators of the upper convergents to the golden ratio, tau; they are also the numerators of the lower convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
For n > 1, a(n) is the smallest Fibonacci number of unit equilateral triangle tiles needed to make an isosceles trapezoid of height F(n) triangles. - Kiran Ananthpur Bacche, Sep 01 2024
REFERENCES
Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 2,5,6,14,33,55.
R. J. Douglas, Tournaments that admit exactly one Hamiltonian cycle, Proc. London Math. Soc., 21 (1970), 716-730.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
A. Gerardin, Reply to Query 4389, L'Intermédiaire des Mathématiciens, 22 (1915), 23.
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 171-172.
Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics, II (Kyoto, 1992), 200--206, World Sci. Publ., River Edge, NJ, (1994).
Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 51-62.
I. Lukovits, A. Graovac, E. Kalman, G. Kaptay, P. Nagy, S. Nikolic, J. Sytchev and N. Trinajstich, "Nanotubes: Number of Kekulé Structures and Aromaticity", J. Chem. Inf. Comput. Sci, vol. 43 (2003), pp. 609-614. See Equation 6 on page 611.
T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
H. Mathieu, Query 3932, L'Intermédiaire des Mathématiciens, 18 (1911), 222. - N. J. A. Sloane, Mar 08 2022
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 101.
Paulo Ribenboim, Primes in Lucas sequences (Chap 4), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 27.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..2388 (terms 0..200 from T. D. Noe)
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math. 335 (2014), 1--7. MR3248794.
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 5, 10.
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
Raghavendra Bhat, Cristian Cobeli, and Alexandru Zaharescu, Filtered rays over iterated absolute differences on layers of integers, arXiv:2309.03922 [math.NT], 2023. See page 16.
Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
Zbigniew R. Bogdanowicz, Formulas for the Number of Spanning Trees in a Fan, Appl. Math. Sci. (2008) Vol. 2, No. 16, 781-786.
A. Bremner and N. Tzanakis, Lucas sequences whose 12th or 9th term is a square, arXiv:math/0405306 [math.NT], 2004.
David Broadhurst, Multiple Landen values and the tribonacci numbers, arXiv:1504.05303 [hep-th], 2015.
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
Marc Chamberland and Christopher French, Generalized Catalan Numbers and Generalized Hankel Transformations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.1.
A. Collins et al., Binary words, n-color compositions and bisection of the Fibonacci numbers, Fib. Quarterly, 51 (2013), 130-136.
Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.3
Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. See Cor. 3.7(e).
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832. doi:10.4134/CKMS.2013.28.4.827.
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Achille Frigeri, A note on Fibonacci number of even index, arXiv:1705.08305 [math.NT], 2017.
M. R. Garey, On enumerating tournaments that admit exactly one Hamiltonian circuit, J. Combin. Theory, B 13 (1972), 266-269.
Dale Gerdemann, Fractal images from (3,-1) recursion, YouTube Video, Oct 30 2014.
I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013), 13.4.5.
A. Gougenheim, About the linear sequence of integers such that each term is the sum of the two preceding Part 1 Part 2, Fib. Quart., 9 (1971), 277-295, 298.
Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (2).
Edyta Hetmaniok, Bozena Piatek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Math. 15 (2017), 477-485.
A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434. Case a=0,b=1; p=3, q=-1.
J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223-236.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 147 [broken link].
Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
J. Jina and P. Trojovsky, On determinants of some tridiagonal matrices connected with Fibonacci numbers, International Journal of Pure and Applied Mathematics 88:4 (2013), 569-575.
Tanya Khovanova, Recursive Sequences
E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, Table 1, k=t=1.
Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312(21) (2012), 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq. (44) lhs, m=5.
Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
I. Lukovits and D. Janezic, Enumeration of conjugated circuits in nanotubes, J. Chem. Inf. Comput. Sci., vol. 44 (2004) pp. 410-414.
G. Narang and A. K. Agarwal, Lattice paths and n-color compositions, Discr. Math., 308 (2008), 1732-1740.
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, and Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
J. Pan, Multiple Binomial Transforms and Families of Integer Sequences, J. Int. Seq. 13 (2010), 10.4.2. Absolute values of F^(-2).
C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys. 135 (2009) 279-373, arXiv:0711.1738. Mentions this sequence.
Luigi Santocanale, On discrete idempotent paths, arXiv:1906.05590 [math.LO], 2019.
N. J. A. Sloane, Transforms
Michael Somos, In the Elliptic Realm.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
Eric Weisstein's World of Mathematics, Fibonacci Hyperbolic Functions.
Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math. 46 (2013), 15-27.
R. Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009) 310-329, MR2555042
FORMULA
G.f.: x / (1 - 3*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = 3*a(n-1) - a(n-2) = A000045(2*n).
a(n) = -a(-n).
a(n) = A060921(n-1, 0), n >= 1.
a(n) = sqrt((A005248(n)^2 - 4)/5).
a(n) = A007598(n) - A007598(n-2), n > 1.
a(n) = (ap^n - am^n)/(ap-am), with ap := (3+sqrt(5))/2, am := (3-sqrt(5))/2.
Invert transform of natural numbers: a(n) = Sum_{k=1..n} k*a(n-k), a(0) = 1. - Vladeta Jovovic, Apr 27 2001
a(n) = S(n-1, 3) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, see A049310.
a(n) = Sum_{k=0..n} binomial(n, k)*F(k). - Benoit Cloitre, Sep 03 2002
Limit_{n->infinity} a(n)/a(n-1) = 1 + phi = (3 + sqrt(5))/2. This sequence includes all of the elements of A033888 combined with A033890.
a(0)=0, a(1)=1, a(2)=3, a(n)*a(n-2) + 1 = a(n-1)^2. - Benoit Cloitre, Dec 06 2002
a(n) = n + Sum_{k=0..n-1} Sum_{i=0..k} a(i) = n + A054452(n). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=1..n} binomial(n+k-1, n-k). - Vladeta Jovovic, Mar 23 2003
E.g.f.: (2/sqrt(5))*exp(3*x/2)*sinh(sqrt(5)*x/2). - Paul Barry, Apr 11 2003
Second diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = F(n)*L(n) = A000045(n)*A000032(n). - Lekraj Beedassy, Nov 17 2003
F(2n+2) = 1, 3, 8, ... is the binomial transform of F(n+2). - Paul Barry, Apr 24 2004
Partial sums of A001519(n). - Lekraj Beedassy, Jun 11 2004
a(n) = Sum_{i=0..n-1} binomial(2*n-1-i, i)*5^(n-i-1)*(-1)^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n) = Sum_{k=0..n} binomial(n+k, n-k-1) = Sum_{k=0..n} binomial(n+k, 2k+1).
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*3^(n-2*k). - Paul Barry, Oct 25 2004
a(n) = (n*L(n) - F(n))/5 = Sum_{k=0..n-1} (-1)^n*L(2*n-2*k-1).
The i-th term of the sequence is the entry (1, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
Computation suggests that this sequence is the Hankel transform of A005807. The Hankel transform of {a(n)} is Det[{{a(1), ..., a(n)}, {a(2), ..., a(n+1)}, ..., {a(n), ..., a(2n-1)}}]. - John W. Layman, Jul 21 2000
a(n+1) = (A005248(n+1) - A001519(n))/2. - Creighton Dement, Aug 15 2004
a(n+1) = Sum_{i=0..n} Sum_{j=0..n} binomial(n-i, j)*binomial(n-j, i). - N. J. A. Sloane, Feb 20 2005
a(n) = (2/sqrt(5))*sinh(2*n*psi), where psi:=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = ((phi+1)^n - A001519(n))/phi with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
Row sums of triangle A135871. - Gary W. Adamson, Dec 02 2007
a(n)^2 = Sum_{k=1..n} a(2*k-1). This is a property of any sequence S(n) such that S(n) = B*S(n-1) - S(n-2) with S(0) = 0 and S(1) = 1 including {0,1,2,3,...} where B = 2. - Kenneth J Ramsey, Mar 23 2008
a(n) = 1/sqrt(5)*(phi^(2*n+2) - phi^(-2*n-2)), where phi = (1+sqrt(5))/2, the golden ratio. - Udita Katugampola (SIU), Sep 24 2008
If p[i] = i and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 02 2010
If p[i] = Stirling2(i,2) and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = F(2*n+10) mod F(2*n+5).
a(n) = 1 + a(n-1) + Sum_{i=1..n-1} a(i), with a(0)=0. - Gary W. Adamson, Feb 19 2011
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 3's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
a(n), n > 1 is equal to the determinant of an (n-x) X (n-1) tridiagonal matrix with 3's in the main diagonal, 1's in the super and subdiagonals, and the rest 0's. - Gary W. Adamson, Jun 27 2011
a(n) = b such that Integral_{x=0..Pi/2} sin(n*x)/(3/2-cos(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n+1) = Sum_{k=0..n} A101950(n,k)*2^k. - Philippe Deléham, Feb 10 2012
G.f.: A(x) = x/(1-3*x+x^2) = G(0)/sqrt(5); where G(k)= 1 -(a^k)/(1 - b*x/(b*x - 2*(a^k)/G(k+1))), a = (7-3*sqrt(5))/2, b = 3+sqrt(5), if |x|<(3-sqrt(5))/2 = 0.3819660...; (continued fraction 3 kind, 3-step ). - Sergei N. Gladkovskii, Jun 25 2012
a(n) = 2^n*b(n;1/2) = -b(n;-1), where b(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012
Product_{n>=1} (1 + 1/a(n)) = 1 + sqrt(5). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (1/6)*(1 + sqrt(5)). - Peter Bala, Dec 23 2012
G.f.: x/(1-2*x) + x^2/(1-2*x)/(Q(0)-x) where Q(k) = 1 - x/(x*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: G(0)/2 - 1, where G(k) = 1 + 1/( 1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: x*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
Sum_{n>=1} 1/(a(n) + 1/a(n)) = 1. Compare with A001519, A049660 and A049670. - Peter Bala, Nov 29 2013
a(n) = U(n-1,3/2) where U(n-1,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 25 2015
The o.g.f. A(x) satisfies A(x) + A(-x) + 6*A(x)*A(-x) = 0. The o.g.f. for A004187 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
For n > 1, a(n) = (3*F(n+1)^2 + 2*F(n-2)*F(n+1) - F(n-2)^2)/4. - J. M. Bergot, Feb 16 2016
For n > 3, a(n) = floor(MA) - 4 for n even and floor(MA) + 5 for n odd. MA is the maximum area of a quadrilateral with lengths of sides in order L(n), L(n), F(n-3), F(n+3), with L(n)=A000032(n). The ratio of the longer diagonal to the shorter approaches 5/3. - J. M. Bergot, Feb 16 2016
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} binomial(n-j,k)*binomial(j,k)*2^(j-k). - Tony Foster III, Sep 18 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{k=1..A000041(n)} A305309(n, k), n >= 1. Also row sums of triangle A078812.- Wolfdieter Lang, May 31 2018
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Sum_{n>=1} 1/a(n) = A153386. - Amiram Eldar, Oct 04 2020
a(n) = A249450(n) + 2. - Leo Tavares, Oct 10 2021
a(n) = -2/(sqrt(5)*tan(2*arctan(phi^(2*n)))), where phi = A001622 is the golden ratio. - Diego Rattaggi, Nov 21 2021
a(n) = sinh(2*n*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From Amiram Eldar, Dec 02 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1 + 1/sqrt(5) (A344212).
Product_{n>=2} (1 + (-1)^n/a(n)) = (5/6) * (1 + 1/sqrt(5)). (End)
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
EXAMPLE
G.f. = x + 3*x^2 + 8*x^3 + 21*x^4 + 55*x^5 + 144*x^6 + 377*x^7 + 987*x^8 + ...
a(3) = 8 because there are exactly 8 idempotent order-preserving full transformations on a 3-element chain, namely: (1,2,3)->(1,1,1),(1,2,3)->(2,2,2),(1,2,3)->(3,3,3),(1,2,3)->(1,1,3),(1,2,3)->(2,2,3),(1,2,3)->(1,2,2),(1,2,3)->(1,3,3),(1,2,3)->(1,2,3)-mappings are coordinate-wise. - Abdullahi Umar, Sep 08 2008
MAPLE
with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 0), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+1), n=0..28); # Zerinvary Lajos, Apr 04 2009
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
a := n -> `if`(n = 0, 0, H(2*n, 1, 1/2)):
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 03 2019
A001906 := proc(n)
combinat[fibonacci](2*n) ;
end proc:
seq(A001906(n), n=0..20) ; # R. J. Mathar, Jan 11 2024
MATHEMATICA
f[n_] := Fibonacci[2n]; Array[f, 28, 0] (* or *)
LinearRecurrence[{3, -1}, {0, 1}, 28] (* Robert G. Wilson v, Jul 13 2011 *)
Take[Fibonacci[Range[0, 60]], {1, -1, 2}] (* Harvey P. Dale, May 23 2012 *)
Table[ ChebyshevU[n-1, 3/2], {n, 0, 30}] (* Jean-François Alcover, Jan 25 2013, after Michael Somos *)
CoefficientList[Series[(x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2014 *)
PROG
(PARI) {a(n) = fibonacci(2*n)}; /* Michael Somos, Dec 06 2002 */
(PARI) {a(n) = subst( poltchebi(n+1)*4 - poltchebi(n)*6, x, 3/2)/5}; /* Michael Somos, Dec 06 2002 */
(PARI) {a(n) = polchebyshev( n-1, 2, 3/2)}; /* Michael Somos Jun 18 2011 */
(PARI) Vec(x/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
(Sage) [lucas_number1(n, 3, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
(Sage) [fibonacci(2*n) for n in range(0, 28)] # Zerinvary Lajos, May 15 2009
(MuPAD) numlib::fibonacci(2*n) $ n = 0..35; // Zerinvary Lajos, May 09 2008
(Haskell)
a001906 n = a001906_list !! n
a001906_list =
0 : 1 : zipWith (-) (map (* 3) $ tail a001906_list) a001906_list
-- Reinhard Zumkeller, Oct 03 2011
(Python)
def a(n, adict={0:0, 1:1}):
if n in adict:
return adict[n]
adict[n]=3*a(n-1) - a(n-2)
return adict[n] # David Nacin, Mar 04 2012
(Maxima) makelist(fib(2*n), n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(Magma) [Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Sep 10 2014
CROSSREFS
Fibonacci A000045 = union of this sequence and A001519.
Inverse sequences A130259 and A130260.
KEYWORD
nonn,easy,nice,core,changed
STATUS
approved
Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.
+10
370
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
OFFSET
1,5
COMMENTS
Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)
REFERENCES
Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).
LINKS
M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
Jarod Alper and Rowan Rowlands, Syzygies of the apolar ideals of the determinant and permanent, arXiv:1709.09286 [math.AC], 2017.
C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv:1204.0362 [math.CO], 2012, p. 8, Lemma 2.4 A_n. [Tom Copeland, Oct 19 2014]
Arvind Ayyer, Matthieu Josuat-Vergès, and Sanjay Ramassamy, Extensions of partial cyclic orders and consecutive coordinate polytopes, arXiv:1803.10351 [math.CO], 2018.
Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, and Julian West, The Dyck pattern poset, Discrete Math. 321 (2014), 12--23. MR3154009.
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 5.
Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
M. Barnabei, F. Bonetti, and M. Silmbani, Two Permutation Classes Enumerated by the Central Binomial Coefficients, J. Int. Seq. 16 (2013) #13.3.8.
Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
C. Bean, M. Tannock, and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.
S. Benchekroun and P. Moszkowski, A bijective proof of an enumerative property of legal bracketings Discrete Math. 176 (1997), no. 1-3, 273-277.
Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
A. Bernini, L. Ferrari, R. Pinzani, and J. West, The Dyck pattern poset, arXiv:1303.3785 [math.CO], 2013.
Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The perimeter of words, Discrete Mathematics, 340, no. 10 (2017): 2456-2465.
M. Bona and B. E. Sagan, On divisibility of Narayana numbers by primes, arXiv:math/0505382 [math.CO], 2005.
Miklós Bóna and Bruce E. Sagan, On Divisibility of Narayana Numbers by Primes, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.4.
J. M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Armin Straub, and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
Alexander Burstein, Distribution of peak heights modulo k and double descents on k-Dyck paths, arXiv:2009.00760 [math.CO], 2020.
Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 12.
D. Callan, T. Mansour, and M. Shattuck, Restricted ascent sequences and Catalan numbers, arXiv:1403.6933 [math.CO], 2014.
L. Carlitz, and John Riordan, Enumeration of some two-line arrays by extent. J. Combinatorial Theory Ser. A 10 1971 271--283. MR0274301(43 #66). (Coefficients of the polynomials A_n(z) defined in (3.9)).
Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, Linear Algebra and its Applications, Volume 471, 15 April 2015, Pages 383-393.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, arXiv:1601.05645 [math.CO], 2016.
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 7.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 12.
R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
R. De Castro, A. L. Ramírez, and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
Yun Ding and Rosena R. X. Du, Counting Humps in Motzkin paths, arXiv:1109.2661 [math.CO], 2011.
T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
T. Doslic, D. Svrtan, and D. Veljan, Enumerative aspects of secondary structures, Discr. Math., 285 (2004), 67-82.
D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2.
Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, Toggling, rowmotion, and homomesy on interval-closed sets, arXiv:2307.08520 [math.CO], 2023.
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 18.
A. España, X. Leoncini, and E. Ugalde, Combinatorics of the paths towards synchronization, arXiv:2205.05948 [math.DS], 2022.
L. Ferrari and E. Munarini, Enumeration of Edges in Some Lattices of Paths, J. Int. Seq. 17 (2014) #14.1.5.
T. A. Fisher, A Caldero-Chapoton map depending on a torsion class, arXiv:1510.07484 [math.RT], 2015-2016.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 182.
S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004.
Alessandra Frabetti, Simplicial properties of the set of planar binary trees, Journal of Algebraic Combinatorics 13, 41-65 (2001).
Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv:1107.3472 [math.CO], 2011.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
R. L. Graham and J. Riordan, The solution of a certain recurrence, Amer. Math. Monthly 73, 1966, pp. 604-608.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Kevin G. Hare and Ghislain McKay, Some properties of even moments of uniform random walks, arXiv:1506.01313 [math.CO], 2015.
F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
H. E. Hoggatt, Jr., Triangular Numbers, Fibonacci Quarterly 12 (Oct. 1974), 221-230.
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv:1208.1052 [math.CO], 2012.
Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J 46, 483-507 (2018); arXiv preprint, 2016.
Thomas Koshy, Illustration of triangle with dark color for odd number, light for even number [Although the illustration says "Applet", this is simply a plain jpeg file]
Vladimir Kostov and Boris Shapiro, Narayana numbers and Schur-Szego composition, arXiv:0804.1028 [math.CA], 2008.
W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
G. Kreweras, and P. Moszkowski, A new enumerative property of the Narayana numbers, Journal of statistical planning and inference 14.1 (1986): 63-67.
Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
A. Laradji and A. Umar, Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8.
A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 16.
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 26-27.
P. A. MacMahon, Combinatory analysis.
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
Toufik Mansour and Reza Rastegar, On typical triangulations of a convex n-gon, arXiv:1911.04025 [math.CO], 2019.
Toufik Mansour, Reza Rastegar, Alexander Roitershtein, and Gökhan Yıldırım, The longest increasing subsequence in involutions avoiding 3412 and another pattern, arXiv:2001.10030 [math.CO], 2020.
Toufik Mansour and Mark Shattuck, Pattern-avoiding set partitions and Catalan numbers, Electronic Journal of Combinatorics, 18(2) (2012), #P34.
Toufik Mansour and Gökhan Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, arXiv:1808.05430 [math.CO], 2018.
A. Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, Volume 30 (2015), #7, pp. 106-117.
MathOverflow, Narayana polynomials as numerator polynomials for Ehrhart series rational functions?, a MO question posed by Tom Copeland and answered by Richard Stanley, 2017.
D. Merlini, R. Sprugnoli, and M. C. Verri, Waiting patterns for a printer, Discrete Applied Mathematics, Volume 144, Issue 3, 2004, Pages 359-373.
A. Micheli and D. Rossin, Edit distance between unlabeled ordered trees, arXiv:math/0506538 [math.CO], 2005.
T. V. Narayana, Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités, Comptes Rendus de l'Académie des Sciences Paris, Vol. 240 (1955), p. 1188-1189.
J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some trialgebras, arXiv:math/0605061 [math.CO], 2006; Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, 2006).
J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, Fundamenta Mathematicae 193 (2007), pp. 189-241; arXiv version, 0511200 [math.CO], 2005.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014. See Fig. 4.
Judy-anne Osborn, Bi-banded paths, a bijection and the Narayana numbers, Australasian Journal of Combinatorics, Volume 48 (2010), Pages 243-252.
T. K. Petersen, Chapter 2. Narayana numbers. In: Eulerian Numbers. Birkhäuser Basel, 2015. doi:10.1007/978-1-4939-3091-3.
Vincent Pilaud and V. Pons, Permutrees, arXiv:1606.09643 [math.CO], 2016-2017.
Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018. [Broken link]
Dun Qiu and Jeffery Remmel, Patterns in words of ordered set partitions, arXiv:1804.07087 [math.CO], 2018.
A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
M. Sheppeard, Constructive motives and scattering 2013 (p. 41). [Tom Copeland, Oct 03 2014]
R. P. Stanley, Theory and application of plane partitions, II. Studies in Appl. Math. 50 (1971), p. 259-279. DOI:10.1002/sapm1971503259. Thm. 18.1.
R. A. Sulanke, Catalan path statistics having the Narayana distribution, Discrete Math., vol. 180 (1998), 369--389. [Gives additional contexts where Narayana numbers appear. - N. J. A. Sloane, Nov 11 2020]
A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
W. Wang and T. Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See pp. 19-20.
L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.
Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019), 44-46.
Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
FORMULA
a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0<n, 1<=k<=n a(n, 1) = a(n, n) = 1 a(n, k) = sum(i=1..n-1, sum(r=1..k-1, a(n-1-i, k-r) a(i, r))) + a(n-1, k) a(n, k) = sum(i=1..k-1, binomial(n+i-1, 2k-2)*a(k-1, i)) - Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = t * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)
EXAMPLE
The initial rows of the triangle are:
[1] 1
[2] 1, 1
[3] 1, 3, 1
[4] 1, 6, 6, 1
[5] 1, 10, 20, 10, 1
[6] 1, 15, 50, 50, 15, 1
[7] 1, 21, 105, 175, 105, 21, 1
[8] 1, 28, 196, 490, 490, 196, 28, 1
[9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
= [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - Tom Copeland, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4, P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - Wolfdieter Lang, Jul 31 2017
MAPLE
A001263 := (n, k)->binomial(n-1, k-1)*binomial(n, k-1)/k;
a:=proc(n, k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1, i), i=1..k-1); fi; end:
# Alternatively, as a (0, 0)-based triangle:
R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n, x), x, j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
MATHEMATICA
T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
Flatten[Table[Binomial[n-1, k-1] Binomial[n, k-1]/k, {n, 15}, {k, n}]] (* Harvey P. Dale, Feb 29 2012 *)
TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
aot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[aot/@c], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n], Length[Position[#, {}]]==k&]], {n, 2, 9}, {k, 1, n-1}] (* Gus Wiseman, Jan 23 2023 *)
T[1, 1] := 1; T[n_, k_]/; 1<=k<=n := T[n, k] = (2n/k-1) T[n-1, k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
PROG
(PARI) {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*y^j)*x^m/m) +O(x^(n+1))), n, x), k, y)} \\ Paul D. Hanna, Oct 13 2010
(Haskell)
a001263 n k = a001263_tabl !! (n-1) !! (k-1)
a001263_row n = a001263_tabl !! (n-1)
a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
dt us vs = zipWith (-) (zipWith (*) us (tail vs))
(zipWith (*) (tail us ++ [0]) (init vs))
-- Reinhard Zumkeller, Oct 10 2013
(Magma) /* triangle */ [[Binomial(n-1, k-1)*Binomial(n, k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
(Sage)
@CachedFunction
def T(n, k):
if k == n or k == 1: return 1
if k <= 0 or k > n: return 0
return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
for n in (1..9): print([T(n, k) for k in (1..n)]) # Peter Luschny, Oct 28 2014
(GAP) Flat(List([1..11], n->List([1..n], k->Binomial(n-1, k-1)*Binomial(n, k-1)/k))); # Muniru A Asiru, Jul 12 2018
CROSSREFS
Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
KEYWORD
nonn,easy,tabl,nice,look
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved
Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 2*k).
+10
77
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 6, 1, 0, 0, 0, 5, 10, 1, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 0, 1, 66, 495, 924
OFFSET
0,9
COMMENTS
Row sums are A011782. Inverse is A065547.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jul 29 2006
Sum of entries in column k is A001519(k+1) (the odd-indexed Fibonacci numbers). - Philippe Deléham, Dec 02 2008
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k left-to-right minima. A left-to-right minimum in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j < i. - Tian Han, Nov 16 2023
LINKS
D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
Tian Han and Sergey Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023.
FORMULA
T(n,k) = binomial(n,2*(n-k)).
From Tom Copeland, Oct 10 2016: (Start)
E.g.f.: exp(t*x) * cosh(t*sqrt(x)).
O.g.f.: (1/2) * ( 1 / (1 - (1 + sqrt(1/x))*x*t) + 1 / (1 - (1 - sqrt(1/x))*x*t) ).
Row polynomial: x^n * ((1 + sqrt(1/x))^n + (1 - sqrt(1/x))^n) / 2. (End)
Column k is generated by the polynomial Sum_{j=0..floor(k/2)} C(k, 2j) * x^(k-j). - Paul Barry, Jan 22 2005
G.f.: (1-x*y)/((1-x*y)^2 - x^2*y). - Paul D. Hanna, Feb 25 2005
Sum_{k=0..n} x^k*T(n,k)= A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 04 2006, Oct 15 2008, Oct 19 2008
T(n,k) = T(n-1,k-1) + Sum_{i=0..k-1} T(n-2-i,k-1-i); T(0,0)=1; T(n,k)=0 if n < 0 or k < 0 or n < k. E.g.: T(8,5) = T(7,4) + T(6,4) + T(5,3) + T(4,2) + T(3,1) + T(2,0) = 7+15+5+1+0+0 = 28. - Philippe Deléham, Dec 04 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively. - Philippe Deléham, Dec 24 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 14 2008
T(n,k) = A085478(k,n-k). - Philippe Deléham, Dec 02 2008
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 15 2012
EXAMPLE
Rows begin
1;
0, 1;
0, 1, 1;
0, 0, 3, 1;
0, 0, 1, 6, 1;
MATHEMATICA
Table[Binomial[n, 2*(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* Michael De Vlieger, Oct 12 2016 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff((1-x*y)/((1-x*y)^2-x^2*y)+x*O(x^n), n, x) + y*O(y^k), k, y)} (Hanna)
(PARI) T(n, k) = binomial(n, 2*(n-k));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Aug 01 2019
(Magma) [Binomial(n, 2*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
(Sage) [[binomial(n, 2*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 2*(n-k)) ))); # G. C. Greubel, Aug 01 2019
CROSSREFS
Cf. A119900. - Philippe Deléham, Dec 02 2008
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 29 2004
STATUS
approved
Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).
+10
43
1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
OFFSET
0,2
COMMENTS
Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022
LINKS
J. P. Allouche and M. Mendes France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From N. J. A. Sloane, May 10 2012
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
Nour-Eddine Fahssi, On the combinatorics of exclusion in Haldane fractional statistics, arXiv:1808.00045 [cond-mat.stat-mech], 2018.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
A. Laradji, and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
FORMULA
G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
EXAMPLE
Triangle begins, 1 <= k <= n:
1
2 1
3 4 1
4 10 6 1
5 20 21 8 1
6 35 56 36 10 1
7 56 126 120 55 12 1
8 84 252 330 220 78 14 1
MAPLE
for n from 1 to 11 do seq(binomial(n+k-1, 2*k-1), k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
# Uses function PMatrix from A357368. Adds a row and column above and to the left.
PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A085478 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
(* Second program *)
Table[Binomial[n+k+1, 2*k+1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
(PARI) {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
(Haskell)
a078812 n k = a078812_tabl !! n !! k
a078812_row n = a078812_tabl !! n
a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
f us vs = ws : f vs ws where
ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
(us ++ [0, 0])
-- Reinhard Zumkeller, Dec 16 2013
(Sage)
@cached_function
def T(k, n):
if k==n: return 1
if k==0: return 0
return sum(i*T(k-1, n-i) for i in (1..n-k+1))
A078812 = lambda n, k: T(k, n)
[[A078812(n, k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
(Sage) [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
(Maxima)
T(n, m):=sum(binomial(2*k, n-m)*binomial(m+k, k)*(-1)^(n-m+k)*binomial(n+1, m+k+1), k, 0, n-m); /* Vladimir Kruchinin, Apr 13 2016 */
(Magma) /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
CROSSREFS
This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Michael Somos, Dec 05 2002
EXTENSIONS
Edited by N. J. A. Sloane, Apr 28 2008
STATUS
approved
Coefficients for expansion of (g(x)d/dx)^n g(x); refined Eulerian numbers for calculating compositional inverse of h(x) = (d/dx)^(-1) 1/g(x); iterated derivatives as infinitesimal generators of flows.
+10
41
1, 1, 1, 1, 1, 4, 1, 1, 11, 4, 7, 1, 1, 26, 34, 32, 15, 11, 1, 1, 57, 180, 122, 34, 192, 76, 15, 26, 16, 1, 1, 120, 768, 423, 496, 1494, 426, 294, 267, 474, 156, 56, 42, 22, 1, 1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1
OFFSET
0,6
COMMENTS
For more detail, including connections to Legendre transformations, rooted trees, A139605, A139002 and A074060, see Mathemagical Forests p. 9.
For connections to the h-polynomials associated to the refined f-polynomials of permutohedra see my comments in A008292 and A049019.
From Tom Copeland, Oct 14 2011: (Start)
Given analytic functions F(x) and FI(x) such that F(FI(x))=FI(F(x))=x about 0, i.e., they are compositional inverses of each other, then, with g(x) = 1/dFI(x)/dx, a flow function W(s,x) can be defined with the following relations:
W(s,x) = exp(s g(x)d/dx)x = F(s+FI(x)) <flow fct.>,
W(s,0) = F(s) <orbit of the flow>,
W(0,x) = x <identity property>,
dW(0,x)/ds = g(x) = F'[FI(x)] <infinitesimal generator>, implying
dW(0,F(x))/ds = g(F(x)) = F'(x) <autonomous diff. eqn.>, and
W(s,W(r,x)) = F(s+FI(F(r+FI(x)))) = F(s+r+FI(x)) = W(s+r,x) <group property>. (See MF link below.) (End)
dW(s,x)/ds - g(x)dW(s,x)/dx = 0, so (1,-g(x)) are the components of a vector orthogonal to the gradient of W and, therefore, tangent to the contour of W, at (s,x) <tangency property>. - Tom Copeland, Oct 26 2011
Though A139605 contains A145271, the op. of A145271 contains that of A139605 in the sense that exp(s g(x)d/dx) w(x) = w(F(s+FI(x))) = exp((exp(s g(x)d/dx)x)d/du)w(u) evaluated at u=0. This is reflected in the fact that the forest of rooted trees assoc. to (g(x)d/dx)^n, FOR_n, can be generated by removing the single trunk of the planted rooted trees of FOR_(n+1). - Tom Copeland, Nov 29 2011
Related to formal group laws for elliptic curves (see Hoffman). - Tom Copeland, Feb 24 2012
The functional equation W(s,x) = F(s+FI(x)), or a restriction of it, is sometimes called the Abel equation or Abel's functional equation (see Houzel and Wikipedia) and is related to Schröder's functional equation and Koenigs functions for compositional iterates (Alexander, Goryainov and Kudryavtseva). - Tom Copeland, Apr 04 2012
g(W(s,x)) = F'(s + FI(x)) = dW(s,x)/ds = g(x) dW(s,x)/dx, connecting the operators here to presentations of the Koenigs / Königs function and Loewner / Löwner evolution equations of the Contreras et al. papers. - Tom Copeland, Jun 03 2018
The autonomous differential equation above also appears with a change in variable of the form x = log(u) in the renormalization group equation, or Beta function. See Wikipedia, Zinn-Justin equations 2.10 and 3.11, and Krajewski and Martinetti equation 21. - Tom Copeland, Jul 23 2020
A variant of these partition polynomials appears on p. 83 of Petreolle et al. with the indeterminates e_n there related to those given in the examples below by e_n = n!*(n'). The coefficients are interpreted as enumerating certain types of trees. See also A190015. - Tom Copeland, Oct 03 2022
REFERENCES
D. S. Alexander, A History of Complex Dynamics: From Schröder to Fatou to Julia, Friedrich Vieweg & Sohn, 1994.
T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC, 2015.
LINKS
Luc Rousseau, Table of n, a(n) for n = 0..9295 (rows 0 to 25, flattened).
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
F. Bracci, M. Contreras, and S. Díaz-Madrigal, On the Königs function of semigroups of holomorphic self-maps of the unit disc, arXiv:1804.10465 [math.CV], p. 15, 2018.
F. Bracci, M. Contreras, S. Díaz-Madrigal, and A. Vasil'ev, Classical and stochastic Löwner-Kufarev equations , arXiv:1309.6423 [math.CV], (cf., e.g., p. 23), 2013.
C. Brouder, Trees, renormalization, and differential equations, BIT Numerical Mathematics, 44: 425-438, 2004, (Flow / autonomous differential equation, p. 429).
M. Contreras, S. Díaz-Madrigal, and P. Gumenyuk, Loewner chains in the unit disk, arXiv:0902.3116 [math.CV], p. 29, 2009.
Tom Copeland, Flipping Functions with Permutohedra, Posted Oct 2008.
Tom Copeland, Mathemagical Forests v2, 2008.
Tom Copeland, Important formulas in combinatorics, MathOverflow answer, 2015.
P. Feinsilver, Lie algebras, representations, and analytic semigroups through dual vector fields, Cimpa-Unesco-Venezuela School, Mérida, Venezuela, Jan-Feb 2006.
P. Feinsilver, R. Schott, Appell systems on Lie groups, J. Theor. Probab. 5 (2) (1992) 251-281.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 526 and 527.
V. Goryainov and O. Kudryavtseva, One-parameter semigroups of analytic functions, fixed points and the Koenigs function, Sbornik: Mathematics, 202:7 (2011), 971-1000.
D. Grinberg, Commutators, matrices, and an identity of Copeland, arXiv:1908.09179 [math.RA], 2019.
C. Houzel, The Work of Niels Henrik Abel, The Legacy of Niels Henrik Abel-The Abel Bicentennial, Oslo 2002 (Editors O. Laudal and R Piene), Springer-Verlag (2004), pp. 24-25.
T. Krajewski and T. Martinetti, Wilsonian renormalization, differential equations and Hopf algebras, arXiv:0806.4309 [hep-th], 2008.
Peter Luschny, Expansion A145271 (added Jul 21 2016)
MathOverflow, Characterizing positivity of formal group laws, a MO question posed by Jair Taylor, 2018.
MathOverflow, Expansions of iterated, or nested, derivatives, or vectors--conjectured matrix computation, a MO question posed by Tom Copeland, answered by Darij Grinberg, 2019.
MathOverflow, A Leibniz-like formula for (f(x)D_x)^n f(x)?, a MO question posed by the user M.G. and answered by Tom Copeland, 2022.
MathStackExchange, Closed form for sequence A145271, posed 2014, response by Tom Copeland in 2016.
J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 66, eqn. 9.3.
Wikipedia, Abel equation
J. Zinn-Justin, Phase Transitions and Renormalization Group: from Theory to Numbers, Séminaire Poincaré 2, pp. 55-74, 2002.
FORMULA
Let R = g(x)d/dx; then
R^0 g(x) = 1 (0')^1
R^1 g(x) = 1 (0')^1 (1')^1
R^2 g(x) = 1 (0')^1 (1')^2 + 1 (0')^2 (2')^1
R^3 g(x) = 1 (0')^1 (1')^3 + 4 (0')^2 (1')^1 (2')^1 + 1 (0')^3 (3')^1
R^4 g(x) = 1 (0')^1 (1')^4 + 11 (0')^2 (1')^2 (2')^1 + 4 (0')^3 (2')^2 + 7 (0')^3 (1')^1 (3')^1 + 1 (0')^4 (4')^1
R^5 g(x) = 1 (0') (1')^5 + 26 (0')^2 (1')^3 (2') + (0')^3 [34 (1') (2')^2 + 32 (1')^2 (3')] + (0')^4 [ 15 (2') (3') + 11 (1') (4')] + (0')^5 (5')
R^6 g(x) = 1 (0') (1')^6 + 57 (0')^2 (1')^4 (2') + (0')^3 [180 (1')^2 (2')^2 + 122 (1')^3 (3')] + (0')^4 [ 34 (2')^3 + 192 (1') (2') (3') + 76 (1')^2 (4')] + (0')^5 [15 (3')^2 + 26 (2') (4') + 16 (1') (5')] + (0')^6 (6')
where (j')^k = ((d/dx)^j g(x))^k. And R^(n-1) g(x) evaluated at x=0 is the n-th Taylor series coefficient of the compositional inverse of h(x) = (d/dx)^(-1) 1/g(x), with the integral from 0 to x.
The partitions are in reverse order to those in Abramowitz and Stegun p. 831. Summing over coefficients with like powers of (0') gives A008292.
Confer A190015 for another way to compute numbers for the array for each partition. - Tom Copeland, Oct 17 2014
Equivalent matrix computation: Multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n g(x) to obtain the matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then R^n g(x) = (1, 0, 0, 0, ...) [VP * S]^n (g_0, g_1, g_2, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. - Tom Copeland, Feb 10 2016 (An evaluation removed by author on Jul 19 2016. Cf. A139605 and A134685.)
Also, R^n g(x) = (1, 0, 0, 0, ...) [VP * S]^(n+1) (0, 1, 0, ...)^T in agreement with A139605. - Tom Copeland, Jul 21 2016
A recursion relation for computing each partition polynomial of this entry from the lower order polynomials and the coefficients of the cycle index polynomials of A036039 is presented in the blog entry "Formal group laws and binomial Sheffer sequences". - Tom Copeland, Feb 06 2018
A formula for computing the polynomials of each row of this matrix is presented as T_{n,1} on p. 196 of the Ihara reference in A139605. - Tom Copeland, Mar 25 2020
Indeterminate substitutions as illustrated in A356145 lead to [E] = [L][P] = [P][E]^(-1)[P] = [P][RT] and [E]^(-1) = [P][L] = [P][E][P] = [RT][P], where [E] contains the refined Eulerian partition polynomials of this entry; [E]^(-1), A356145, the inverse set to [E]; [P], the permutahedra polynomials of A133314; [L], the classic Lagrange inversion polynomials of A134685; and [RT], the reciprocal tangent polynomials of A356144. Since [L]^2 = [P]^2 = [RT]^2 = [I], the substitutional identity, [L] = [E][P] = [P][E]^(-1) = [RT][P], [RT] = [E]^(-1)[P] = [P][L][P] = [P][E], and [P] = [L][E] = [E][RT] = [E]^(-1)[L] = [RT][E]^(-1). - Tom Copeland, Oct 05 2022
EXAMPLE
From Tom Copeland, Sep 19 2014: (Start)
Let h(x) = log((1+a*x)/(1+b*x))/(a-b); then, g(x) = 1/(dh(x)/dx) = (1+ax)(1+bx), so (0')=1, (1')=a+b, (2')=2ab, evaluated at x=0, and higher order derivatives of g(x) vanish. Therefore, evaluated at x=0,
R^0 g(x) = 1
R^1 g(x) = a+b
R^2 g(x) = (a+b)^2 + 2ab = a^2 + 4 ab + b^2
R^3 g(x) = (a+b)^3 + 4*(a+b)*2ab = a^3 + 11 a^2*b + 11 ab^2 + b^3
R^4 g(x) = (a+b)^4 + 11*(a+b)^2*2ab + 4*(2ab)^2
= a^4 + 26 a^3*b + 66 a^2*b^2 + 26 ab^3 + b^4,
etc., and these bivariate Eulerian polynomials (A008292) are the first few coefficients of h^(-1)(x) = (e^(ax) - e^(bx))/(a*e^(bx) - b*e^(ax)), the inverse of h(x). (End)
Triangle starts:
1;
1;
1, 1;
1, 4, 1;
1, 11, 4, 7, 1;
1, 26, 34, 32, 15, 11, 1;
1, 57, 180, 122, 34, 192, 76, 15, 26, 16, 1;
1, 120, 768, 423, 496, 1494, 426, 294, 267, 474, 156, 56, 42, 22, 1;
1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1;
MAPLE
with(LinearAlgebra): with(ListTools):
A145271_row := proc(n) local b, M, V, U, G, R, T;
if n < 2 then return 1 fi;
b := (n, k) -> `if`(k=1 or k>n+1, 0, binomial(n-1, k-2)*g[n-k+1]);
M := n -> Matrix(n, b):
V := n -> Vector[row]([1, seq(0, i=2..n)]):
U := n -> VectorMatrixMultiply(V(n), M(n)^(n-1)):
G := n -> Vector([seq(g[i], i=0..n-1)]);
R := n -> VectorMatrixMultiply(U(n), G(n)):
T := Reverse([op(sort(expand(R(n+1))))]);
seq(subs({seq(g[i]=1, i=0..n)}, T[j]), j=1..nops(T)) end:
for n from 0 to 9 do A145271_row(n) od; # Peter Luschny, Jul 20 2016
CROSSREFS
Cf. (A133437, A086810, A181289) = (LIF, reduced LIF, associated g(x)), where LIF is a Lagrange inversion formula. Similarly for (A134264, A001263, A119900), (A134685, A134991, A019538), (A133932, A111999, A007318).
Second column is A000295, subdiagonal is A000124, row sums are A000142, row lengths are A000041. - Peter Luschny, Jul 21 2016
KEYWORD
easy,nonn,tabf,look
AUTHOR
Tom Copeland, Oct 06 2008
EXTENSIONS
Title amplified by Tom Copeland, Mar 17 2014
R^5 and R^6 formulas and terms a(19)-a(29) added by Tom Copeland, Jul 11 2016
More terms from Peter Luschny, Jul 20 2016
STATUS
approved
Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).
+10
37
1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
OFFSET
0,2
COMMENTS
Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by _Wolfdieter_ Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Naiomi T. Cameron and Asamoah Nkwanta, On some (pseudo) involutions in the Riordan group, J. of Integer Sequences, 8(2005), 1-16.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014 (p. 10). - Tom Copeland, Oct 11 2014
Pentti Haukkanen, Jorma Merikoski, Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193.
Eric Weisstein's World of Mathematics, Cartan Matrix
Eric Weisstein's World of Mathematics, Dynkin Diagram
FORMULA
a(n, m) := 0 if n<m else ((-1)^(n-m))*binomial(n+m+1, 2*m+1);
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n<m;
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: -2 1
2: 3 -4 1
3: -4 10 -6 1
4: 5 -20 21 -8 1
5: -6 35 -56 36 -10 1
6: 7 -56 126 -120 55 -12 1
7: -8 84 -252 330 -220 78 -14 1
8: 9 -120 462 -792 715 -364 105 -16 1
9: -10 165 -792 1716 -2002 1365 -560 136 -18 1
... Reformatted and extended by Wolfdieter Lang, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From Wolfdieter Lang, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5 + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - Wolfdieter Lang, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - Wolfdieter Lang, Jun 03 2020
MAPLE
seq(seq((-1)^(n+m)*binomial(n+m+1, 2*m+1), m=0..n), n=0..10); # Robert Israel, Oct 15 2014
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
MATHEMATICA
T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
(* Alternative code for the matrices from MathWorld: *)
sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
PROG
(Sage)
@CachedFunction
def A053122(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A053122(n-1, k-1)-A053122(n-2, k)-2*A053122(n-1, k)
for n in (0..9): [A053122(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017
KEYWORD
easy,nice,sign,tabl
STATUS
approved
Coefficients T(j, k) of a partition transform for Lagrange compositional inversion of a function or generating series in terms of the coefficients of the power series for its reciprocal. Enumeration of noncrossing partitions and primitive parking functions. T(n,k) for n >= 1 and 1 <= k <= A000041(n-1), an irregular triangle read by rows.
+10
36
1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 3, 15, 30, 5, 20, 30, 15, 1, 1, 7, 7, 7, 21, 42, 21, 21, 35, 105, 35, 35, 70, 21, 1, 1, 8, 8, 8, 4, 28, 56, 56, 28, 28, 56, 168, 84, 168, 14, 70, 280, 140, 56, 140, 28, 1, 1, 9, 9, 9, 9, 36, 72
OFFSET
1,6
COMMENTS
Coefficients are listed in Abramowitz and Stegun order (A036036).
Given an invertible function f(t) analytic about t=0 (or a formal power series) with f(0)=0 and Df(0) not equal to 0, form h(t) = t / f(t) and let h_n denote the coefficient of t^n in h(t).
Lagrange inversion gives the compositional inverse about t=0 as g(t) = Sum_{j>=1} ( t^j * (1/j) * Sum_{permutations s with s(1) + s(2) + ... + s(j) = j - 1} h_s(1) * h_s(2) * ... * h_s(j) ) = t * T(1,1) * h_0 + Sum_{j>=2} ( t^j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) ), where H(j-1,k ; h_0,h_1,...) is the k-th partition for h_1 through h_(j-1) corresponding to n=j-1 on page 831 of Abramowitz and Stegun (ordered as in A&S) with (h_0)^(j-m)=(h_0)^(n+1-m) appended to each partition subsumed under n and m of A&S.
Denoting h_n by (n') for brevity, to 8th order in t,
g(t) = t * (0')
+ t^2 * [ (0') (1') ]
+ t^3 * [ (0')^2 (2') + (0') (1')^2 ]
+ t^4 * [ (0')^3 (3') + 3 (0')^2 (1') (2') + (0') (1')^3 ]
+ t^5 * [ (0')^4 (4') + 4 (0')^3 (1') (3') + 2 (0')^3 (2')^2 + 6 (0')^2 (1')^2 (2') + (0') (1')^4 ]
+ t^6 * [ (0')^5 (5') + 5 (0')^4 (1') (4') + 5 (0')^4 (2') (3') + 10 (0')^3 (1')^2 (3') + 10 (0')^3 (1') (2')^2 + 10 (0')^2 (1')^3 (2') + (0') (1')^5 ]
+ t^7 * [ (0')^6 (6') + 6 (0')^5 (1') (5') + 6 (0')^5 (2') (4') + 3 (0')^5 (3')^2 + 15 (0')^4 (1')^2 (4') + 30 (0')^4 (1') (2') (3') + 5 (0')^4 (2')^3 + 20 (0')^3 (1')^3 (3') + 30 (0')^3 (1')^2 (2')^2 + 15 (0')^2 (1')^4 (2') + (0') (1')^6]
+ t^8 * [ (0')^7 (7') + 7 (0')^6 (1') (6') + 7 (0')^6 (2') (5') + 7 (0')^6 (3') (4') + 21 (0')^5 (1')^2* (5') + 42 (0')^5 (1') (2') (4') + 21 (0')^5 (1') (3')^2 + 21 (0')^5 (2')^2 (3') + 35 (0')^4 (1')^3 (4') + 105 (0)^4 (1')^2 (2') (3') + 35 (0')^4 (1') (2')^3 + 35 (0')^3 (1')^4 (3') + 70 (0')^3 (1')^3 (2')^2 + 21 (0')^2 (1')^5 (2') + (0') (1')^7 ]
+ ..., where from the formula section, for example, T(8,1',2',...,7') = 7! / ((8 - (1'+ 2' + ... + 7'))! * 1'! * 2'! * ... * 7'!) are the coefficients of the integer partitions (1')^1' (2')^2' ... (7')^7' in the t^8 term.
A125181 is an extended, reordered version of the above sequence, omitting the leading 1, with alternate interpretations.
If the coefficients of partitions with the same exponent for h_0 are summed within rows, A001263 is obtained, omitting the leading 1.
From identification of the elements of the inversion with those on page 25 of the Ardila et al. link, the coefficients of the irregular table enumerate non-crossing partitions on [n]. - Tom Copeland, Oct 13 2014
From Tom Copeland, Oct 28-29 2014: (Start)
Operating with d/d(1') = d/d(h_1) on the n-th partition polynomial Prt(n;h_0,h_1,..,h_n) in square brackets above associated with t^(n+1) generates n * Prt(n-1;h_0,h_1,..,h_(n-1)); therefore, the polynomials are an Appell sequence of polynomials in the indeterminate h_1 when h_0=1 (a special type of Sheffer sequence).
Consequently, umbrally, [Prt(.;1,x,h_2,..) + y]^n = Prt(n;1,x+y,h_2,..); that is, Sum_{k=0..n} binomial(n,k) * Prt(k;1,x,h_2,..) * y^(n-k) = Prt(n;1,x+y,h_2,..).
Or, e^(x*z) * exp[Prt(.;1,0,h_2,..) * z] = exp[Prt(.;1,x,h_2,..) * z]. Then with x = h_1 = -(1/2) * d^2[f(t)]/dt^2 evaluated at t=0, the formal Laplace transform from z to 1/t of this expression generates g(t), the comp. inverse of f(t), when h_0 = 1 = df(t)/dt eval. at t=0.
I.e., t / (1 - t*(x + Prt(.;1,0,h_2,..))) = t / (1 - t*Prt(.;1,x,h_2,..)) = g(t), interpreted umbrally, when h_0 = 1.
(End)
Connections to and between arrays associated to the Catalan (A000108 and A007317), Riordan (A005043), Fibonacci (A000045), and Fine (A000957) numbers and to lattice paths, e.g., the Motzkin, Dyck, and Łukasiewicz, can be made explicit by considering the inverse in x of the o.g.f. of A104597(x,-t), i.e., f(x) = P(Cinv(x),t-1) = Cinv(x) / (1 + (t-1)*Cinv(x)) = x*(1-x) / (1 + (t-1)*x*(1-x)) = (x-x^2) / (1 + (t-1)*(x-x^2)), where Cinv(x) = x*(1-x) is the inverse of C(x) = (1 - sqrt(1-4*x)) / 2, a shifted o.g.f. for the Catalan numbers, and P(x,t) = x / (1+t*x) with inverse Pinv(x,t) = -P(-x,t) = x / (1-t*x). Then h(x,t) = x / f(x,t) = x * (1+(t-1)Cinv(x)) / Cinv(x) = 1 + t*x + x^2 + x^3 + ..., i.e., h_1=t and all other coefficients are 1, so the inverse of f(x,t) in x, which is explicitly in closed form finv(x,t) = C(Pinv(x,t-1)), is given by A091867, whose coefficients are sums of the refined Narayana numbers above obtained by setting h_1=(1')=t in the partition polynomials and all other coefficients to one. The group generators C(x) and P(x,t) and their inverses allow associations to be easily made between these classic number arrays. - Tom Copeland, Nov 03 2014
From Tom Copeland, Nov 10 2014: (Start)
Inverting in x with t a parameter, let F(x;t,n) = x - t*x^(n+1). Then h(x) = x / F(x;t,n) = 1 / (1-t*x^n) = 1 + t*x^n + t^2*x^(2n) + t^3*x^(3n) + ..., so h_k vanishes unless k = m*n with m an integer in which case h_k = t^m.
Finv(x;t,n) = Sum_{j>=0} {binomial((n+1)*j,j) / (n*j + 1)} * t^j * x^(n*j + 1), which gives the Catalan numbers for n=1, and the Fuss-Catalan sequences for n>1 (see A001764, n=2). [Added braces to disambiguate the formula. - N. J. A. Sloane, Oct 20 2015]
This relation reveals properties of the partitions and sums of the coefficients of the array. For n=1, h_k = t^k for all k, implying that the row sums are the Catalan numbers. For n = 2, h_k for k odd vanishes, implying that there are no blocks with only even-indexed h_k on the even-numbered rows and that only the blocks containing only even-sized bins contribute to the odd-row sums giving the Fuss-Catalan numbers for n=2. And so on, for n > 2.
These relations are reflected in any combinatorial structures enumerated by this array and the partitions, such as the noncrossing partitions depicted for a five-element set (a pentagon) in Wikipedia.
(End)
From Tom Copeland, Nov 12 2014: (Start)
An Appell sequence possesses an umbral inverse sequence (cf. A249548). The partition polynomials here, Prt(n;1,h_1,...), are an Appell sequence in the indeterminate h_1=u, so have an e.g.f. exp[Prt(.;1,u,h_2...)*t] = e^(u*t) * exp[Prt(.;1,0,h2,...)*t] with umbral inverses with an e.g.f e^(-u*t) / exp[Prt(.;1,0,h2,...)*t]. This makes contact with the formalism of A133314 (cf. also A049019 and A019538) and the signed, refined face partition polynomials of the permutahedra (or their duals), which determine the reciprocal of exp[Prt(.,0,u,h2...)*t] (cf. A249548) or exp[Prt(.;1,u,h2,...)*t], forming connections among the combinatorics of permutahedra and the noncrossing partitions, Dyck paths and trees (cf. A125181), and many other important structures isomorphic to the partitions of this entry, as well as to formal cumulants through A127671 and algebraic structures of Lie algebras. (Cf. relationship of permutahedra with the Eulerians A008292.)
(End)
From Tom Copeland, Nov 24 2014: (Start)
The n-th row multiplied by n gives the number of terms in the homogeneous symmetric monomials generated by [x(1) + x(2) + ... + x(n+1)]^n under the umbral mapping x(m)^j = h_j, for any m. E.g., [a + b + c]^2 = [a^2 + b^2 + c^2] + 2 * [a*b + a*c + b*c] is mapped to [3 * h_2] + 2 * [3 * h_1^2], and 3 * A134264(3) = 3 *(1,1)= (3,3) the number of summands in the two homogeneous polynomials in the square brackets. For n=3, [a + b + c + d]^3 = [a^3 + b^3 + ...] + 3 [a*b^2 + a*c^2 + ...] + 6 [a*b*c + a*c*d + ...] maps to [4 * h_3] + 3 [12 * h_1 * h_2] + 6 [4 * (h_1)^3], and the number of terms in the brackets is given by 4 * A134264(4) = 4 * (1,3,1) = (4,12,4).
The further reduced expression is 4 h_3 + 36 h_1 h_2 + 24 (h_1)^3 = A248120(4) with h_0 = 1. The general relation is n * A134264(n) = A248120(n) / A036038(n-1) where the arithmetic is performed on the coefficients of matching partitions in each row n.
Abramowitz and Stegun give combinatorial interpretations of A036038 and relations to other number arrays.
This can also be related to repeated umbral composition of Appell sequences and topology with the Bernoulli numbers playing a special role. See the Todd class link.
(End)
These partition polynomials are dubbed the Voiculescu polynomials on page 11 of the He and Jejjala link. - Tom Copeland, Jan 16 2015
See page 5 of the Josuat-Verges et al. reference for a refinement of these partition polynomials into a noncommutative version composed of nondecreasing parking functions. - Tom Copeland, Oct 05 2016
(Per Copeland's Oct 13 2014 comment.) The number of non-crossing set partitions whose block sizes are the parts of the n-th integer partition, where the ordering of integer partitions is first by total, then by length, then lexicographically by the reversed sequence of parts. - Gus Wiseman, Feb 15 2019
With h_0 = 1 and the other h_n replaced by suitably signed partition polynomials of A263633, the refined face partition polynomials for the associahedra of normalized A133437 with a shift in indices are obtained (cf. In the Realm of Shadows). - Tom Copeland, Sep 09 2019
Number of primitive parking functions associated to each partition of n. See Lemma 3.8 on p. 28 of Rattan. - Tom Copeland, Sep 10 2019
With h_n = n + 1, the d_k (A006013) of Table 2, p. 18, of Jong et al. are obtained, counting the n-point correlation functions in a quantum field theory. - Tom Copeland, Dec 25 2019
By inspection of the diagrams on Robert Dickau's website, one can see the relationship between the monomials of this entry and the connectivity of the line segments of the noncrossing partitions. - Tom Copeland, Dec 25 2019
Speicher has examples of the first four inversion partition polynomials on pp. 22 and 23 with his k_n equivalent to h_n = (n') here with h_0 = 1. Identifying z = t, C(z) = t/f(t) = h(t), and M(z) = f^(-1)(t)/t, then statement (3), on p. 43, of Theorem 3.26, C(z M(z)) = M(z), is equivalent to substituting f^(-1)(t) for t in t/f(t), and statement (4), M(z/C(z)) = C(z), to substituting f(t) for t in f^(-1)(t)/t. - Tom Copeland, Dec 08 2021
Given a Laurent series of the form f(z) = 1/z + h_1 + h_2 z + h_3 z^2 + ..., the compositional inverse is f^(-1)(z) = 1/z + Prt(1;1,h_1)/z^2 + Prt(2;1,h_1,h_2)/z^3 + ... = 1/z + h_1/z^2 + (h_1^2 + h_2)/z^3 + (h_1^3 + 3 h_1 h_2 + h_3)/z^4 + (h_1^4 + 6 h_1^2 h_2 + 4 h_1 h_3 + 2 h_2^2 + h_4)/z^5 + ... for which the polynomials in the numerators are the partition polynomials of this entry. For example, this formula applied to the q-expansion of Klein's j-invariant / function with coefficients A000521, related to monstrous moonshine, gives the compositional inverse with the coefficients A091406 (see He and Jejjala). - Tom Copeland, Dec 18 2021
The partition polynomials of A350499 'invert' the polynomials of this entry giving the indeterminates h_n. A multinomial formula for the coefficients of the partition polynomials of this entry, equivalent to the multinomial formula presented in the first four sentences of the formula section below, is presented in the MathOverflow question referenced in A350499. - Tom Copeland, Feb 19 2022
REFERENCES
A. Nica and R. Speicher (editors), Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series: 335, Cambridge University Press, 2006 (see in particular, Eqn. 9.14 on p. 141, enumerating noncrossing partitions).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2087 (rows 1..20)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A. Alexandrov, Enumerative geometry, tau-functions, and Heisenberg-Virasoro algebra, arXiv:hep-th/1404.3402v3, 2015 (p.22).
M. Ashelevich and W. Mlotkowski, Semigroups of distributions with linear Jacobi parameters, arxiv.org/abs/1001.1540v3 [math.CO], p. 9, 2011.
F. Ardila, F. Rincon, and L. Williams, Positroids and non-crossing partitions, arXiv preprint arXiv:1308.2698v2 [math.CO], 2013 (p. 25).
T. Banica, S. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws, arXiv preprint arXiv:0710.5931 [math.PR], 2008.
Freddy Cachazo and Bruno Giménez Umbert, Connecting Scalar Amplitudes using The Positive Tropical Grassmannian, arXiv:2205.02722 [hep-th], 2022.
David Callan, Sets, Lists and Noncrossing Partitions , arXiv:0711.4841 [math.CO], 2008.
B. Collins, I. Nechita, and K. Zyczkowski, Random graph states, maximal flow and Fuss-Catalan distributions, arXiv preprint arXiv:1003.3075 [quant-ph], 2010.
Tom Copeland, The Hirzebruch criterion for the Todd class Dec. 14, 2014.
R. Dickau, Non-crossing partitions, Robert Dickau's website, 2012.
K. Ebrahimi-Fard, L. Foissy, J. Kock, and F. Patras, Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations, arXiv:1907.01190 [math.CO], 2019, p. 25.
K. Ebrahimi-Fard and F. Patras, Cumulants, free cumulants and half-shuffles, arXiv:1409.5664v2 [math.CO], 2015, p. 12.
K. Ebrahimi-Fard and F. Patras, The splitting process in free probability theory, arXiv:1502.02748 [math.CO], 2015, p. 3.
Y. He and V. Jejjala, Modular Matrix Models, arXiv:hep-th/0307293, 2003.
J. Jong, A. Hock, and R. Wulkenhaar Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv preprint arXiv:1904.11231 [math-ph], 2019.
M. Josuat-Verges, F. Menous, J. Novelli, and J. Thibon, Noncommutative free cumulants, arxiv.org/abs/1604.04759 [math.CO], 2016.
Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
C. Lenart, Lagrange inversion and Schur functions, Journal of Algebraic Combinatorics, Vol. 11, Issue 1, p. 69-78, 2000, (see p. 70, Eqn. 1.2).
M. Mastnak and A. Nica, Hopf algebras and the logarithm of the S-transform in free probability, arXiv:0807.4169v2 [math.OA], p. 28, 2008-2009.
MathOverflow, Guises of the Noncrossing Partitions (NCPs), an MO question posed by Tom Copeland, 2019.
MathOverflow, Combinatorial/diagrammatic models for free moment partition polynomials, an MO question posed by Tom Copeland, 2021.
J. McCammond, Non-crossing Partitions in Surprising Locations, American Mathematical Monthly 113 (2006) 598-610.
A. Rattan, Parking functions and related combinatorial structures, Master's thesis, Univ. of Waterloo, 2014.
A. Schuetz and G. Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
R. Simion, Noncrossing partitions, Discrete Mathematics, Vol. 217, Issues 1-3, pp. 367-409, 2000.
R. Speicher, Lecture Notes on "Free Probability Theory", arXiv:1908.08125 [math.OA], 2019.
Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
FORMULA
For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is [ P(j,m;a...) / j ] for the k-th partition of j-1 as described in the comments.
For example from g(t) above, T(5,4) = (5! / ((5-3)! * 2!)) / 5 = 6 for the 4th partition under n=5-1=4 with m=3 parts in A&S.
From Tom Copeland, Sep 30 2011: (Start)
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}
= [(h_0)-1+:1/(1-h.*x):]^2 / {(h_0)-:[h.x/(1-h.x)]^2:}
= [(h_0)+(h_1)x+(h_2)x^2+...]^2 / [(h_0)-(h_2)x^2-2(h_3)x^3-3(h_4)x^4-...], where :" ": denotes umbral evaluation of the expression within the colons and h. is an umbral coefficient.
Then for the partition polynomials of A134264,
Poly[n;h_0,...,h_(n-1)]=(1/n!)(W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t) = exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)), and g(t) gives A001263 with (h_0)=u and (h_n)=1 for n>0 and A000108 with u=1.
(End)
From Tom Copeland, Oct 20 2011: (Start)
With exp(x* PS(.,t)) = exp(t*g(x)) = exp(x*W(y)d/dy) exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t) = n*PS(n-1,t) are
R = t*W(d/dt) = t*((h_0) + (h_1)d/dt + (h_2)(d/dt)^2 + ...)^2 / ((h_0) - (h_2)(d/dt)^2 - 2(h_3)(d/dt)^3 - 3(h_4)(d/dt)^4 + ...), and
L = (d/dt)/h(d/dt) = (d/dt) 1/((h_0) + (h_1)*d/dt + (h_2)*(d/dt)^2 + ...)
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0 are the row polynomials of A134264. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
(End)
Using the formalism of A263634, the raising operator for the partition polynomials of this array with h_0 = 1 begins as R = h_1 + h_2 D + h_3 D^2/2! + (h_4 - h_2^2) D^3/3! + (h_5 - 5 h_2 h_3) D^4/4! + (h_6 + 5 h_2^3 - 7 h_3^2 - 9 h_2 h_4) D^5/5! + (h_7 - 14 h_2 h_5 + 56 h_2^2 h_3) D^6/6! + ... with D = d/d(h_1). - Tom Copeland, Sep 09 2016
Let h(x) = x/f^{-1}(x) = 1/[1-(c_2*x+c_3*x^2+...)], with c_n all greater than zero. Then h_n are all greater than zero and h_0 = 1. Determine P_n(t) from exp[t*f^{-1}(x)] = exp[x*P.(t)] with f^{-1}(x) = x/h(x) expressed in terms of the h_n (cf. A133314 and A263633). Then P_n(b.) = 0 gives a recursion relation for the inversion polynomials of this entry a_n = b_n/n! in terms of the lower order inversion polynomials and P_j(b.)P_k(b.) = P_j(t)P_k(t)|_{t^n = b_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)]. - Tom Copeland, Feb 09 2018
A raising operator for the partition polynomials with h_0 = 1 regarded as a Sheffer Appell sequence in h_1 is described in A249548. - Tom Copeland, Jul 03 2018
EXAMPLE
1) With f(t) = t / (t-1), then h(t) = -(1-t), giving h_0 = -1, h_1 = 1 and h_n = 0 for n>1. Then g(t) = -t - t^2 - t^3 - ... = t / (t-1).
2) With f(t) = t*(1-t), then h(t) = 1 / (1-t), giving h_n = 1 for all n. The compositional inverse of this f(t) is g(t) = t*A(t) where A(t) is the o.g.f. for the Catalan numbers; therefore the sum over k of T(j,k), i.e., the row sum, is the Catalan number A000108(j-1).
3) With f(t) = (e^(-a*t)-1) / (-a), h(t) = Sum_{n>=0} Bernoulli(n) * (-a*t)^n / n! and g(t) = log(1-a*t) / (-a) = Sum_{n>=1} a^(n-1) * t^n / n. Therefore with h_n = Bernoulli(n) * (-a)^n / n!, Sum_{permutations s with s(1)+s(2)+...+s(j)=j-1} h_s(1) * h_s(2) * ... * h_s(j) = j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) = a^(j-1). Note, in turn, Sum_{a=1..m} a^(j-1) = (Bernoulli(j,m+1) - Bernoulli(j)) / j for the Bernoulli polynomials and numbers, for j>1.
4) With f(t,x) = t / (x-1+1/(1-t)), then h(t,x) = x-1+1/(1-t), giving (h_0)=x and (h_n)=1 for n>1. Then g(t,x) = (1-(1-x)*t-sqrt(1-2*(1+x)*t+((x-1)*t)^2)) / 2, a shifted o.g.f. in t for the Narayana polynomials in x of A001263.
5) With h(t)= o.g.f. of A075834, but with A075834(1)=2 rather than 1, which is the o.g.f. for the number of connected positroids on [n] (cf. Ardila et al., p. 25), g(t) is the o.g.f. for A000522, which is the o.g.f. for the number of positroids on [n]. (Added Oct 13 2014 by author.)
6) With f(t,x) = x / ((1-t*x)*(1-(1+t)*x)), an o.g.f. for A074909, the reverse face polynomials of the simplices, h(t,x) = (1-t*x) * (1-(1+t)*x) with h_0=1, h_1=-(1+2*t), and h_2=t*(1+t), giving as the inverse in x about 0 the o.g.f. (1+(1+2*t)*x-sqrt(1+(1+2*t)*2*x+x^2)) / (2*t*(1+t)*x) for signed A033282, the reverse face polynomials of the Stasheff polytopes, or associahedra. Cf. A248727. (Added Jan 21 2015 by author.)
7) With f(x,t) = x / ((1+x)*(1+t*x)), an o.g.f. for the polynomials (-1)^n * (1 + t + ... + t^n), h(t,x) = (1+x) * (1+t*x) with h_0=1, h_1=(1+t), and h_2=t, giving as the inverse in x about 0 the o.g.f. (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2)) / (2*x*t) for the Narayana polynomials A001263. Cf. A046802. (Added Jan 24 2015 by author.)
From Gus Wiseman, Feb 15 2019: (Start)
Triangle begins:
1
1
1 1
1 3 1
1 4 2 6 1
1 5 5 10 10 10 1
1 6 6 3 15 30 5 20 30 15 1
1 7 7 7 21 42 21 21 35 105 35 35 70 21 1
Row 5 counts the following non-crossing set partitions:
{{1234}} {{1}{234}} {{12}{34}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{123}{4}} {{14}{23}} {{1}{23}{4}}
{{124}{3}} {{12}{3}{4}}
{{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
(End)
MATHEMATICA
Table[Binomial[Total[y], Length[y]-1]*(Length[y]-1)!/Product[Count[y, i]!, {i, Max@@y}], {n, 7}, {y, Sort[Sort/@IntegerPartitions[n]]}] (* Gus Wiseman, Feb 15 2019 *)
PROG
(PARI)
C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
row(n)=[C(Vec(p)) | p<-partitions(n-1)]
{ for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
CROSSREFS
(A001263,A119900) = (reduced array, associated g(x)). See A145271 for meaning and other examples of reduced and associated.
Other orderings are A125181 and A306438.
Cf. A119900 (e.g.f. for reduced W(x) with (h_0)=t and (h_n)=1 for n>0).
Cf. A248927 and A248120, "scaled" versions of this Lagrange inversion.
Cf. A091867 and A125181, for relations to lattice paths and trees.
Cf. A249548 for use of Appell properties to generate the polynomials.
Cf. A133314, A049019, A019538, A127671, and A008292 for relations to permutahedra, Eulerians.
Cf. A006013.
KEYWORD
nonn,tabf
AUTHOR
Tom Copeland, Jan 14 2008
EXTENSIONS
Added explicit t^6, t^7, and t^8 polynomials and extended initial table to include the coefficients of t^8. - Tom Copeland, Sep 14 2016
Title modified by Tom Copeland, May 28 2018
More terms from Gus Wiseman, Feb 15 2019
Title modified by Tom Copeland, Sep 10 2019
STATUS
approved
Triangle of odd-numbered terms in rows of Pascal's triangle.
+10
23
1, 2, 3, 1, 4, 4, 5, 10, 1, 6, 20, 6, 7, 35, 21, 1, 8, 56, 56, 8, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 11, 165, 462, 330, 55, 1, 12, 220, 792, 792, 220, 12, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 15, 455, 3003, 6435, 5005, 1365, 105, 1
OFFSET
0,2
COMMENTS
Also triangle of numbers of n-sequences of 0,1 with k subsequences of consecutive 01 because this number is C(n+1,2*k+1). - Roger Cuculiere (cuculier(AT)imaginet.fr), Nov 16 2002
From Gary W. Adamson, Oct 17 2008: (Start)
Received from Herb Conn:
Let T = tan x, then
tan x = T
tan 2x = 2T / (1 - T^2)
tan 3x = (3T - T^3) / (1 - 3T^2)
tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
... To get the next one in the series, (tan 10x), for the numerator add:
9....84....126....36....1 previous numerator +
1....36....126....84....9 previous denominator =
10..120....252...120...10 = new numerator
For the denominator add:
......9.....84...126...36...1 = previous numerator +
1....36....126....84....9.... = previous denominator =
1....45....210...210...45...1 = new denominator
...where numerators = A034867, denominators = A034839
(End)
Column k is the sum of columns 2k and 2k+1 of A007318. - Philippe Deléham, Nov 12 2008
Triangle, with zeros omitted, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
The row polynomials N(n,x) = Sum_{k=0..floor((n-1)/2)} T(n-1,k)*x^k, and D(n,x) = Sum_{k=0..floor(n/2)} A034839(n,k)*x^k, n >= 1, satisfy the recurrences N(n,x) = D(n-1,x) + N(n-1,x), D(n,x) = D(n-1,x) + x*N(n-1,x), with inputs N(1,x) = 1 = D(1,x). This is due to the Pascal triangle A007318 recurrence. Q(n,x) := tan(n*x)/tan(x) satisfies the recurrence Q(n,x) = (1 + Q(n-1,x)/(1 - v(x)*Q(n-1,x)) with input Q(1,x) = 1 and v = v(x) := (tan(x))^2. This recurrence is obtained from the addition theorem for tan(n*x) using n = 1 + (n-1). Therefore Q(n,x) = N(n,-v(x))/D(n,-v(x)). This proves the Gary W. Adamson contribution from above. See also A220673. This calculation was motivated by an e-mail of Thomas Olsen. The Oliver/Prodinger and Ma references resort to HAKEM Al Memo 239, Item 16, for the tan(n*x) formula in terms of tan(x). - Wolfdieter Lang, Jan 17 2013
The infinitesimal generator (infinigen) for the Narayana polynomials A090181/A001263 can be formed from the row polynomials P(n,y) of this entry. The resulting matrix is an instance of a matrix representation of the analytic infinigens presented in A145271 for general sets of binomial Sheffer polynomials and in A001263 and A119900 specifically for the Narayana polynomials. Given the column vector of row polynomials V = (1, P(1,x) = 2x, P(2,y) = 3x + x^2, P(3,y) = 4x + 4x^2, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th Narayana polynomial. - Tom Copeland, Dec 09 2015
The diagonals of this entry are A078812 (also shifted A128908 and unsigned A053122, which are embedded in A030528, A102426, A098925, A109466, A092865). Equivalently, the antidiagonals of A078812 are the rows of A034867. - Tom Copeland, Dec 12 2015
Binomial(n,2k+1) is also the number of permutations avoiding both 132 and 213 with k peaks, i.e., positions with w[i]<w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018
Binomial(n,2k+1) is also the number of permutations avoiding both 123 and 132 with k peaks, i.e., positions with w[i]<w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 136.
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From N. J. A. Sloane, Oct 13 2012
K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, [DOI], [PDF]. - From N. J. A. Sloane, Jan 03 2013
Eric Weisstein's World of Mathematics, Tangent. [From Eric W. Weisstein, Oct 18 2008]
FORMULA
T(n,k) = C(n+1,2k+1) = Sum_{i=k..n-k} C(i,k) * C(n-i,k).
E.g.f.: 1+(exp(x)*sinh(x*sqrt(y)))/sqrt(y). - Vladeta Jovovic, Mar 20 2005
G.f.: 1/((1-z)^2-t*z^2). - Emeric Deutsch, Apr 01 2005
T(n,k) = Sum_{j = 0..n} A034839(j,k). - Philippe Deléham, May 18 2005
Pell(n+1) = A000129(n+1) = Sum_{k=0..n} T(n,k) * 2^k = (1/n!) Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
T(n,k) = A007318(n,2k) + A007318(n,2k+1). - Philippe Deléham, Nov 12 2008
O.g.f for column k, k>=0: (1/(1-x)^2)*(x/(1-x))^(2*k). See the G.f. of this array given above by Emeric Deutsch. - Wolfdieter Lang, Jan 18 2013
T(n,k) = (x^(2*k+1))*((1+x)^n-(1-x)^n)/2. - L. Edson Jeffery, Jan 15 2014
EXAMPLE
Triangle starts:
1
2
3 1
4 4
5 10 1
6 20 6
- Philippe Deléham, Dec 12 2011
MAPLE
seq(seq(binomial(n+1, 2*k+1), k=0..floor(n/2)), n=0..14); # Emeric Deutsch, Apr 01 2005
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 12;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu] (* A034839 as a triangle *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv] (* A034867 as a triangle *)
(* Clark Kimberling, Feb 18 2012 *)
Table[Binomial[n+1, 2*k+1], {n, 0, 20}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 06 2018 *)
PROG
(PARI) for(n=0, 20, for(k=0, floor(n/2), print1(binomial(n+1, 2*k+1), ", "))) \\ G. C. Greubel, Mar 06 2018
(Magma) /* as a triangle */ [[Binomial(n+1, 2*k+1): k in [0..Floor(n/2)]]: n in [0..20]]; // G. C. Greubel, Mar 06 2018
KEYWORD
nonn,tabf,easy
EXTENSIONS
More terms from Emeric Deutsch, Apr 01 2005
STATUS
approved
Even row Pascal-square read by antidiagonals.
+10
8
1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10
OFFSET
1,3
COMMENTS
Apart from signs identical to A053123. Mirror of A078812.
As a triangle, row n consists of the coefficients of Morgan-Voyce polynomial B(n,x); e.g., B(3,x)=x^3+6x^2+10x+4. As a triangle, rows 0 to 4 are as follows: 1 1...2 1...4...3 1...6...10...4 1...8...21...20...5 See A054142 for coefficients of Morgan-Voyce polynomial b(n,x).
Scaled version of A119900. - Philippe Deléham, Feb 24 2012
A172431 is jointly generated with A054142 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012
FORMULA
As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4,... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013]
As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012
T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016
As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1) for n >= 1. - Werner Schulte, Apr 26 2017
As triangle T(n,k) with 1 <= k <= n: T(n,k) = binomial(2*n-k, k-1). - Paul Weisenhorn, Nov 25 2019
EXAMPLE
Array begins:
1, 2, 3, 4, 5, 6, ...
1, 4, 10, 20, 35, ...
1, 6, 21, 56, ...
1, 8, 36, ...
1, 10, ...
1, ...
...
Example:
Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above.
For n = 9 the a(9) = 10 solution is 2*4 - 1 + 3.
From Philippe Deléham, Feb 24 2012: (Start)
Triangle T(n,k) begins:
1;
1, 2;
1, 4, 3;
1, 6, 10, 4;
1, 8, 21, 20, 5;
1, 10, 36, 56, 35, 6;
1, 12, 55, 120, 126, 56, 7; (End)
From Philippe Deléham, Mar 22 2012: (Start)
(1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 3, 0;
1, 6, 10, 4, 0;
1, 8, 21, 20, 5, 0;
1, 10, 36, 56, 35, 6, 0;
1, 12, 55, 120, 126, 56, 7, 0; (End)
MAPLE
T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)):
for n from 0 to 10 do seq(T(n, k), k=0..n-1) od; # Peter Luschny, May 10 2016
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A054142 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A172431 *)
(* Clark Kimberling, Mar 09 2012 *)
Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) );
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 15 2019
(Magma) F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019
(Sage) [[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019
(GAP) F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019
CROSSREFS
Cf. A078812, A053123, A007318, A001906 (antidiagonals sums), A007685.
Cf. also A054142, A082985.
KEYWORD
nonn,tabl
AUTHOR
Mark Dols, Feb 02 2010
STATUS
approved
Triangle read by rows: T(n,k) is the number of ternary words of length n with k strictly increasing runs (0 <= k <= n; for example, the ternary word 2|01|12|02|1|1|012|2 has 8 strictly increasing runs).
+10
4
1, 0, 3, 0, 3, 6, 0, 1, 16, 10, 0, 0, 15, 51, 15, 0, 0, 6, 90, 126, 21, 0, 0, 1, 77, 357, 266, 28, 0, 0, 0, 36, 504, 1107, 504, 36, 0, 0, 0, 9, 414, 2304, 2907, 882, 45, 0, 0, 0, 1, 210, 2850, 8350, 6765, 1452, 55, 0, 0, 0, 0, 66, 2277, 14355, 25653, 14355, 2277, 66, 0, 0, 0, 0, 12
OFFSET
0,3
COMMENTS
Sum of entries in row n is 3^n (A000244).
Sum of entries in column k is A099464(k+1) (a trisection of the tribonacci numbers).
Row n contains 1 + floor(2n/3) nonzero terms.
T(n,n) = (n+1)*(n+2)/2 (the triangular numbers (A000217)).
Sum_{k=0..n} k*T(n,k) = (2n+1)*3^(n-1) = 3*A081038(n-1) for n >= 1.
T(n,k) = A120987(n,n-k).
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.
FORMULA
T(n,k) = trinomial(n+1,3n-3k+2) = trinomial(n+1,3k-n) (conjecture).
G.f.: 1/(1-3tz-3t(1-t)z^2-t(1-t)^2*z^3).
Can anyone prove the conjecture (either from the g.f. or combinatorially from the definition)?
From Giuliano Cabrele, Mar 02 2008: (Start)
The conjecture is compatible with the g.f., which can be rewritten as (1-t)/(1-t(1+(1-t)z)^3) and expanded to give T(n,k) = Sum_{j=0..k} (-1)^(k-j)*C(3j, n)*C(n+1, k-j) = Sum_{j=0..k} (-1)^j*C(n+1,j)*C(3k-3j,n) = trinomial(n+1,3k-n) = A027907(n+1,3k-n).
Also (1-t)/(1-t(1+(1-t)z)^2) equals the g.f. for the case of binary words, A119900, where Sum_{j=0..k} (-1)^(k-j)*C(2j,n)*C(n+1,k-j) = C(n+1,2k-n). Changing the exponent to 1 gives 1/(1-zt), the g.f. for the case of unary words, the expansion coefficients of which can be written as Kronecker delta(k-n)^(n+1) = Sum_{j=0..k} (-1)^(k-j)*C(j, n)*C(n+1,k-j).
So the conjecture shifts to that the g.f. is (1-t)/(1-t(1+(1-t)z)^m) and coefficients T(m,n,k) = Sum_{j=0..k} (-1)^(k-j)*C(mj,n)*C(n+1, k-j) may apply to the general case of m-ary words. (End)
Sum_{k=0..n} T(n,k) *(-1)^(n-k) = A157241(n+1). - Philippe Deléham, Oct 25 2011
The generalized conjecture above can in fact be proved, as described in the file "Words Partitioned according to Number of Strictly Increasing Runs" linked above. - Giuliano Cabrele, Dec 11 2015
EXAMPLE
T(5,2) = 6 because we have 012|01, 012|02, 012|12, 01|012, 02|012 and 12|012 (the runs are separated by |).
Triangle starts:
1;
0, 3;
0, 3, 6;
0, 1, 16, 10;
0, 0, 15, 51, 15;
0, 0, 6, 90, 126, 21;
MAPLE
G:=1/(1-3*t*z-3*t*(1-t)*z^2-t*(1-t)^2*z^3): Gser:=simplify(series(G, z=0, 33)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[Sum[(-1)^j*Binomial[n + 1, j]*Binomial[3 k - 3 j, n], {j, 0, k}], {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Dec 20 2015 *)
PROG
(MuPAD)
// binomial c. defined as in linked document
Cb:=(x, m)->_if(0<=m and is(m in Z_), binomial(x, m), 0):
// closed formula derived and proved in the linked document
// Qsc(r, q, m) with r=2
T(n, k):=(n, k)->_plus((-1)^(k-j)*Cb(n+1, k-j)*Cb(3*j, n)$j=0..k):
// Giuliano Cabrele, Dec 11 2015
CROSSREFS
Nb(s,2,q) = A027907(q,s). - Giuliano Cabrele, Dec 11 2015
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 23 2006
STATUS
approved

Search completed in 1.262 seconds