[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a119900 -id:a119900
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
+10
3
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
OFFSET
0,3
COMMENTS
Previous name was: "A scaled version of triangle A082985."
Triangle, read by rows, given by (0, 1/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
LINKS
FORMULA
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 3.
G.f.: (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Sum_{i, i>=0} T(n+i,n) = A000204(2*n+1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A078069(n), A000007(n), A003945(n), A111566(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A090131(n), A005408(n), A003945(n), A078057(n), A028859(n), A000244(n), A063782(n), A180168(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively.
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k,n) = 1/2*(2*n + 1)*(n*(n + 1))^p.
For example, for row 6 we find S(6,n) + 27*S(8,n) + 55*S(10,n) + 13*S(12,n) = 1/2*(2*n + 1)*(n*(n + 1))^6.
There appears to be a similar result for the odd power sums S(2*k + 1,n) involving A119900. (End)
EXAMPLE
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
MAPLE
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s, x, 12):
seq(print(seq(coeff(coeff(t, x, n), y, m), m=0..n)), n=0..11); # Peter Luschny, Aug 17 2016
CROSSREFS
Cf. A082985 which is another version of this triangle.
Cf. Diagonals : A005408, A000330, A005585, A050486, A054333, A057788. Cf. A119900.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Feb 24 2012
EXTENSIONS
New name using a formula of the author from Peter Luschny, Aug 17 2016
STATUS
approved
Binomial coefficients C(n,k) with n-k odd, read by rows.
+10
2
1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
OFFSET
1,2
COMMENTS
The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)
LINKS
EXAMPLE
Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1, 3;
4, 4;
1, 10, 5;
6, 20, 6;
1, 21, 35, 7;
8, 56, 56, 8;
1, 36, 126, 84, 9;
10, 120, 252, 120, 10;
MAPLE
T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
CROSSREFS
Cf. A109446.
KEYWORD
easy,nonn,tabf
AUTHOR
Philippe Deléham, Aug 27 2005
EXTENSIONS
More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014
STATUS
approved
Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
+10
1
1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
FORMULA
G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012
EXAMPLE
Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
CROSSREFS
Cf. A007318, A000079 (row sums), A005314 (antidiagonal sums), A119900, A034867, A084938, A130595, A203322.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 10 2011
STATUS
approved
Triangle read by rows: T(n,m) is the number of quaternary words of length n with m strictly increasing runs (0 <= m <= n).
+10
1
1, 0, 4, 0, 6, 10, 0, 4, 40, 20, 0, 1, 65, 155, 35, 0, 0, 56, 456, 456, 56, 0, 0, 28, 728, 2128, 1128, 84, 0, 0, 8, 728, 5328, 7728, 2472, 120, 0, 0, 1, 486, 8451, 27876, 23607, 4950, 165
OFFSET
0,3
COMMENTS
In the following description the alphabet {0..r} is taken as a basis, with r = 3 in this case.
For example, the quaternary word 2|03|123|3 of length n=7, has m=4 strictly increasing runs.
The empty word has n = 0 and m = 0, and T(0, 0) = 1.
T(n, 0) = 0 for n >= 1.
T(n, m) <> 0 for m <= n <= m*(r+1). T(m*(r+1), m) = 1.
T(n,m) is a partition, based on m, of all the words of length n, so Sum_{k=0..n} T(n,k) = (r+1)^n.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.
FORMULA
Refer to comment to A120987 concerning formulas for general values of r and considerations.
Therefrom we get
T(n, m) = Qsc(3, n, m) =
Nb(4*m-n, 3, n+1) = Nb(4*(n-m)+3, 3, n+1) =
Sum_{j=0..n+1} (-1)^j*Cb(n+1, j)*Cb(4*(m-j), 4*(m-j)-n) =
Sum_{j=0..m} (-1)^(m-j)*Cb(n+1, m-j)*Cb(4*j, n) =
(in this last version Cb(n,m) can be replaced by binomial(n,m))
Sum_{j=0..m} (-1)^(m-j)*binomial(n+1, m-j)*binomial(4*j, n) = [z^n, t^m](1-t)/(1-t(1+(1-t)z)^4) where [x^n]F(x) denotes the coefficient of x^n in the formal power series expansion of F(x),
Nb(s,r,n) denotes the (r+1)-nomial coefficient [x^s](1+x+..+x^r)^n,(Nb(s,3,n) = A008287(n,s)).
Cb(x,m) denotes the binomial coefficient in its extended falling factorial notation (Cb(x,m)= x^_m/m! iff m is a nonnegative integer, 0 otherwise), as defined in the Graham et al. reference.
The diagonal T(n, n) = Nb(3, 3, n+1) = Sum_{j=0..n} (-1)^(n-j)*Cb(n+1, n-j)*Cb(4*j, n) = Cb(n+3, 3) = binomial(n+3, 3) = A000292(n+1).
EXAMPLE
Triangle starts:
1;
0, 4;
0, 6, 10;
0, 4, 40, 20;
0, 1, 65, 155, 35;
0, 0, 56, 456, 456, 56;
.
T(3,2) = 40, which accounts for the following words:
[0 <= a <= 0, 1 | 0 <= b <= 1] = 2
[0 <= a <= 1, 2 | 0 <= b <= 2] = 6
[0 <= a <= 2, 3 | 0 <= b <= 3] = 12
[0 <= a <= 3 | 0, 1 <= b <= 3] = 12
[1 <= a <= 3 | 1, 2 <= b <= 3] = 6
[2 <= a <= 3 | 2, 3 <= b <= 3] = 2
PROG
(MuPAD) T:=(n, m)->_plus((-1)^(m-j)*binomial(n+1, m-j)*binomial(4*j, n)$j=0..m):
(PARI) T(n, k) = sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*binomial(4*j, n));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Feb 09 2016
CROSSREFS
Cf. A119900 (r=1, binary words), A120987 (r=2, ternary words), A008287 (quadrinomial coefficients).
Row sums give A000302.
Cf. A000292.
KEYWORD
tabl,nonn
AUTHOR
Giuliano Cabrele, Dec 13 2015
STATUS
approved

Search completed in 0.046 seconds