[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a083746 -id:a083746
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 3*n!.
+10
12
3, 3, 6, 18, 72, 360, 2160, 15120, 120960, 1088640, 10886400, 119750400, 1437004800, 18681062400, 261534873600, 3923023104000, 62768369664000, 1067062284288000, 19207121117184000, 364935301226496000, 7298706024529920000, 153272826515128320000
OFFSET
0,1
COMMENTS
a(n) is the size of the centralizer of a 3-cycle in the symmetric group S_(n+3). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 12 2001
3 times factorial numbers. - Omar E. Pol, Jan 17 2009
FORMULA
E.g.f.: 3/(1-x).
a(n) = n*a(n-1), with a(0) = 3.
For n>0: a(n) = Sum_{k=1..n+1} A083746(k). - Reinhard Zumkeller, Apr 14 2007
MAPLE
spec := [S, {S=Union(Sequence(Z), Sequence(Z), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
a:=n->sum(n!, k=1..n):seq(a(n)-sum(n!, k=4..n), n=0..19); # Zerinvary Lajos, Dec 22 2008
MATHEMATICA
3*Range[0, 25]! (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
PROG
(Magma) [3*Factorial(n): n in [0..25]]; // Vincenzo Librandi, Jun 13 2011
(PARI) a(n)=3*n! \\ Charles R Greathouse IV, Nov 20 2011
(Sage) [3*factorial(n) for n in range(25)] # G. C. Greubel, May 05 2019
CROSSREFS
Row 13 of A276955 (from term a(3)=18 onward).
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved
a(n) = 3*n*n!.
+10
4
0, 3, 12, 54, 288, 1800, 12960, 105840, 967680, 9797760, 108864000, 1317254400, 17244057600, 242853811200, 3661488230400, 58845346560000, 1004293914624000, 18140058832896000, 345728180109312000
OFFSET
0,2
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
E.g.f.: 3*x/(1-x)^2.
Recurrence: a(0)=0, a(1)=3, (n-1)*a(n) = n^2*a(n-1).
a(n) = A122972(n+2) - A122972(n) for n > 0. - Reinhard Zumkeller, Sep 21 2006
For n>0: a(n) = A083746(n+2). - Reinhard Zumkeller, Apr 14 2007
G.f.: 3*Hypergeometric2F0([2,2], [], x). - G. C. Greubel, Jun 12 2022
MAPLE
spec := [S, {S=Prod(Sequence(Z), Sequence(Z), Union(Z, Z, Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[3 n n!, {n, 0, 20}] (* Harvey P. Dale, Feb 12 2017 *)
PROG
(Magma) [3*(Factorial(n+1)-Factorial(n)): n in [0..30]]; // G. C. Greubel, Jun 12 2022
(SageMath) [3*n*factorial(n) for n in (0..30)] # G. C. Greubel, Jun 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved
a(1)=1, a(n) = -1 + n*Sum_{j=1..n-1} a(j).
+10
3
1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979
OFFSET
1,3
LINKS
FORMULA
For n >= 2, a(n) = floor(n*(3-e)*n!).
a(n) = n*A056543(n) - 1, n > 1. - Vladeta Jovovic, Apr 26 2003
From Peter Bala, Jul 09 2008: (Start)
In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... .
For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!).
For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k+1)!*binomial(n,k).
Limit_{n -> oo} a(n)/(n*n!) = 3 - e.
E.g.f.: 1 + t + (3*t - exp(t))/(1-t)^2.
a(n) = A083746(n+2) - A001339(n).
Recurrence relation: a(1) = 1, a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >= 4.
Recurrence relation: a(1) = 1, a(2) = 1, a(n) = (n^2*a(n-1) + 1)/(n-1) for n >= 2.
The recurrence relation x(n) = (n^2*x(n-1) - 1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End)
MAPLE
a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
MATHEMATICA
a[n_]:= a[n]= If[n<3, 1, -1 +n*Sum[a[j], {j, n-1}]];
Table[a[n], {n, 40}] (* G. C. Greubel, Feb 03 2024 *)
PROG
(Magma) [n le 2 select 1 else (n^2*Self(n-1) +1)/(n-1): n in [1..30]]; // G. C. Greubel, Feb 03 2024
(SageMath)
@CachedFunction # a = A082425
def a(n): return 1 if (n==1) else -1 + n*sum(a(j) for j in range(1, n))
[a(n) for n in range(1, 41)] # G. C. Greubel, Feb 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 24 2003
EXTENSIONS
Offset corrected by G. C. Greubel, Feb 03 2024
STATUS
approved
a(n) = sum of sums of all sets of three distinct preceding terms otherwise a(n) = n for n <= 3.
+10
3
1, 2, 3, 6, 36, 288, 3360, 55440, 1241856, 36427776, 1358235648, 62818398720, 3531789972480, 237336286150656, 18792718657929216, 1732062236305809408, 183865068161693614080, 22273939685873740677120
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(n-2)*(n-3)*Sum_{j=1..n-1} a(j) for n > 3, with a(1) = 1, a(2) = 2, a(3) = 3.
a(n) = A000217(n-3)*A129380(n-1) for n > 3.
From G. C. Greubel, Feb 02 2024: (Start)
a(n) = (6/2^(n-4))*binomial(n-2,2)*|Pochhammer((3+i*sqrt(7))/2, n-4)|^2 for n > 3, otherwise a(n) = n.
a(n) = (3/2^(n-3))*binomial(n-2,2)*Product_{k=0..n-3} (k^2 - k + 2), for n > 3, otherwise a(n) = n.
a(n) = (n-2)*(n^2-7*n+14)/(2*(n-4))*a(n-1), for n > 4, otherwise a(n) = binomial(n, floor(n/2)).
(End)
From Vaclav Kotesovec, Feb 03 2024: (Start)
For n>=4, a(n) = 3 * 2^(3-n) * (n-3) * (n-2) * cosh(sqrt(7)*Pi/2) * Gamma(n - 5/2 - i*sqrt(7)/2) * Gamma(n - 5/2 + i*sqrt(7)/2)/Pi, where i is the imaginary unit.
a(n) ~ 3 * cosh(sqrt(7)*Pi/2) * n^(2*n-4) / (2^(n-4) * exp(2*n)). (End)
MATHEMATICA
a[n_]:= a[n]= If[n<5, Binomial[n, Floor[n/2]], (n-2)*(n^2-7*n+14)*a[n- 1]/(2*(n-4))];
Table[a[n], {n, 40}] (* G. C. Greubel, Feb 02 2024 *)
Round[Flatten[{{1, 2, 3}, Table[3 * 2^(3-n) * (n-3) * (n-2) * Cosh[Sqrt[7]*Pi/2] * Gamma[n - 5/2 - I*Sqrt[7]/2] * Gamma[n - 5/2 + I*Sqrt[7]/2]/Pi, {n, 4, 20}]}]] (* Vaclav Kotesovec, Feb 03 2024 *)
PROG
(Magma)
A129379:= func< n | n le 3 select Binomial(n, Floor(n/2)) else (3/2^(n-3))*Binomial(n-2, 2)*(&*[k^2-k+2: k in [0..n-3]]) >;
[A129379(n): n in [1..30]]; // G. C. Greubel, Feb 02 2024
(SageMath)
def A129379(n): return binomial(n, n//2) if n<4 else 3*binomial(n-2, 2)*product(j^2-j+2 for j in range(n-2))//2^(n-3)
[A129379(n) for n in range(1, 31)] # G. C. Greubel, Feb 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 14 2007
STATUS
approved

Search completed in 0.013 seconds