[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083746
a(1) = 1, a(2) = 2; for n>2, a(n) = 3*(n-2)*(n-2)!.
5
1, 2, 3, 12, 54, 288, 1800, 12960, 105840, 967680, 9797760, 108864000, 1317254400, 17244057600, 242853811200, 3661488230400, 58845346560000, 1004293914624000, 18140058832896000, 345728180109312000, 6933770723303424000
OFFSET
1,2
COMMENTS
a(1) = 1, a(2) = 2, define S(k) = sum of all the terms other than a(k) k < n. a(n) = Sum_{k=1..n-1} S(k).
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081, 2014
FORMULA
a(n) = (n-2)*Sum_{j=1..n-1} a(j).
E.g.f.: 3*(x-2)*log(1-x) - 5*x + x^2. - Vladeta Jovovic, May 06 2003
From Reinhard Zumkeller, Apr 14 2007: (Start)
Sum_{k=1..n} a(k) = A052560(n-1) for n > 1.
a(n) = A052673(n-2) for n > 2. (End)
EXAMPLE
a(4) = {a(1) + a(2)} + {a(1) +a(3)} + {a(2) + a(3)} = 12.
MAPLE
a := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(2) fi: 3*(n-2)*(n-2)! end: for n from 1 to 40 do printf(`%d, `, a(n)) od: # James A. Sellers, May 19 2003
MATHEMATICA
Join[{1, 2}, Table[3n n!, {n, 20}]] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(Magma) [n le 2 select n else 3*(n-2)*Factorial(n-2): n in [1..40]]; // G. C. Greubel, Feb 03 2024
(SageMath) [1, 2]+[3*(n-2)*factorial(n-2) for n in range(3, 41)] // G. C. Greubel, Feb 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003
EXTENSIONS
Simpler description from Vladeta Jovovic, May 06 2003
More terms from James A. Sellers, May 19 2003
STATUS
approved