[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a083479 -id:a083479
     Sort: relevance | references | number | modified | created      Format: long | short | data
Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).
+20
11
5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
OFFSET
1,1
COMMENTS
The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]
FORMULA
Row sums are powers of 2.
a(n) = A000330(n) + A006011(n+1) + A034263(n-1).
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]
EXAMPLE
The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
CROSSREFS
Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, Dec 29 2003; extended May 04 2005
EXTENSIONS
Extended beyond a(8) by R. J. Mathar, Jun 26 2010
STATUS
approved
T(n,k) is the number of simply connected square animals with n cells and k internal vertices (0 <= k <= A083479(n)), triangle read by rows.
+20
3
1, 1, 2, 4, 1, 11, 1, 27, 7, 1, 82, 21, 4, 250, 90, 21, 2, 815, 334, 89, 9, 1, 2685, 1311, 391, 67, 6, 9072, 4978, 1674, 324, 45, 1, 30889, 19030, 7089, 1630, 275, 23, 1, 106290, 72082, 29433, 7629, 1498, 174, 11
OFFSET
1,3
LINKS
Elena V. Konstantinova, The constructive enumeration of square animals, POSTECH 10 (2000).
Elena V. Konstantinova and Maxim V. Vidyuk, Discriminating tests of information and topological indices. Animals and trees, J. Chem. Inf. Comput. Sci. 43 (2003), 1860-1871, Table 2.
EXAMPLE
The table starts:
1;
1;
2;
4, 1;
11, 1;
27, 7, 1;
82, 21, 4;
250, 90, 21, 2;
815, 334, 89, 9, 1;
2685, 1311, 391, 67, 6;
9072, 4978, 1674, 324, 45, 1;
30889, 19030, 7089, 1630, 275, 23, 1;
106290, 72082, 29433, 7629, 1498, 174, 11;
...
CROSSREFS
Cf. A000104 (row sums), A350030 (first column of this sequence).
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, May 19 2019
STATUS
approved
Triangle read by rows: counts the permutations of partitions described in A083480. Both Arrays have shape sequence A083479.
+20
1
1, 2, 4, 7, 1, 11, 5, 16, 14, 2, 22, 30, 12, 29, 55, 39, 5, 37, 91, 95, 32, 1, 46, 140, 195, 113, 18, 56, 204, 357, 299, 101, 7, 67, 285, 602, 664, 357, 71, 2, 79, 385, 954, 1309, 978, 350, 41, 92, 506, 1440, 2366, 2274, 1204, 292, 18
OFFSET
1,2
EXAMPLE
The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
KEYWORD
nonn,tabf
AUTHOR
Alford Arnold, Jan 03 2004
STATUS
approved
Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).
+10
57
1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241, 257, 273, 290, 307, 325, 343, 362, 381, 401, 421, 442, 463, 485, 507, 530, 553, 577, 601, 626, 651, 677, 703, 730, 757, 785, 813, 842
OFFSET
0,3
COMMENTS
Fill an infinity X infinity matrix with numbers so that 1..n^2 appear in the top left n X n corner for all n; write down the minimal elements in the rows and columns and sort into increasing order; maximize this list in the lexicographic order.
From Donald S. McDonald, Jan 09 2003: (Start)
Numbers of the form n^2 + 1 or n^2 + n + 1.
Locations of right angle turns in Ulam square spiral. (End)
a(n-1) (for n >= 1) is also the number u of unique Fibonacci/Lucas type sequences generated (the total number t of these sequences being a triangular number). Sum(n+1)=t. Then u=Sum((n+1/2) minus 0.5 for odd terms) except for the initial term. E.g., u=13: (n=6)+1 = 7; then 7/2 - 0.5 =3. So u = Sum(1, 1, 1, 2, 2, 3, 3) = 13. - Marco Matosic, Mar 11 2003
Number of (3412,123)-avoiding involutions in S_n.
Schur's Theorem (1905): the maximum number of mutually commuting linearly independent complex matrices of order n is floor((n^2)/4) + 1. Jacobson gave a simpler proof 40 years later, generalizing from algebraically closed fields to arbitrary fields. 54 years after that, Mirzakhani gave an even simpler proof. - Jonathan Vos Post, Apr 03 2007
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=(-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Except for the initial two terms, A033638 gives iterates of the nonsquare function: c(n) = f(c(n-1)), where f(n) = A000037(n) = n + floor(1/2 + sqrt(n)) = n-th nonsquare, starting with c(1)=2. - Clark Kimberling, Dec 28 2010
For n >= 1: for all permutations of [0..n-1]: number of distinct values taken by Sum_{k=0..n-1} (k mod 2) * pi(k). - Joerg Arndt, Apr 22 2011
First differences are A110654. - Jon Perry, Sep 12 2012
Number of (weakly) unimodal compositions of n with maximal part <= 2, see example. - Joerg Arndt, May 10 2013
Construct an infinite triangular matrix with 1's in the leftmost column and the natural numbers in all other columns but shifted down twice. Square the triangle and the sequence is the leftmost column vector. - Gary W. Adamson, Jan 27 2014
Equals the sum of terms in upward sloping diagonals of an infinite lower triangle with 1's in the leftmost column and the natural numbers in all other columns. - Gary W. Adamson, Jan 29 2014
a(n) is the number of permutations of length n avoiding both 213 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of partitions of n with no more than 2 parts > 1. - Wouter Meeussen, Feb 22 2015, revised Apr 24 2023
Number of possible values for the area of a polyomino whose perimeter is 2n + 4. - Luc Rousseau, May 10 2018
a(n) is the number of 231-avoiding even Grassmannian permutations of size n+1. - Juan B. Gil, Mar 10 2023
For n > 0, a(n) is the smallest number that requires n iterations of the map k -> k - floor(sqrt(k)) to reach 0. - Jon E. Schoenfield, Jun 24 2023
a(n) agrees with the lower matching number of the (n + 1) X (n + 1) black bishop graph from n = 1 up to at least n = 14. - Eric W. Weisstein, Dec 23 2024
LINKS
Kassie Archer and Aaron Geary, Descents in powers of permutations, arXiv:2406.09369 [math.CO], 2024.
Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021. See Proposition 2.3 p. 4.
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
Nathan Jacobson, Schur's theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944) 431-436.
M. Mirzakhani, A Simple Proof of a Theorem of Schur, The American Mathematical Monthly, Vol. 105, No. 3 (Mar 1998), pp. 260-262.
D. Necas and I. Ohlidal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499. See Table 1.
I. Schur, Neue Begründung der Theorie der Gruppencharaktere, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1905), 406-432.
Harold N. Ward, A Normal Graph Algebra, arXiv:2201.00389 [math.CO], 2022.
Eric Weisstein's World of Mathematics, Black Bishop Graph.
Eric Weisstein's World of Mathematics, Lower Matching Number.
FORMULA
a(n) = ceiling((n^2+3)/4) = ( (7 + (-1)^n)/2 + n^2 )/4.
a(n) = A001055(prime^n), number of factorizations. - Reinhard Zumkeller, Dec 29 2001
G.f.: (1-x+x^3)/((1-x)^2*(1-x^2)); a(n) = a(n-1) + a(n-2) - a(n-3) + 1. - Jon Perry, Jul 07 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
a(0) = 1; a(1) = 1; for n > 1 a(n) = a(n-1) + round(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
a(n) = floor((n^2)/4) + 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3. - Philippe Deléham, Nov 03 2008
a(0) = a(1) = 1, a(n) = a(n-1) + ceiling(sqrt(a(n-2))) for n > 1. - Jonathan Vos Post, Oct 08 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 1. - Richard R. Forberg, Jun 08 2013
a(n) = a(n-1) + floor(n/2). - Michel Lagneau, Jul 11 2014
From Ilya Gutkovskiy, Oct 07 2016: (Start)
E.g.f.: (exp(-x) + (7 + 2*x + 2*x^2)*exp(x))/8.
a(n) = Sum_{k=0..n} A123108(k).
Convolution of A008619 and A179184. (End)
a(n) = (n^2 - n + 4)/2 - a(n-1) for n >= 1. - Kritsada Moomuang, Aug 03 2019
EXAMPLE
First 4 rows can be taken to be 1,2,5,10,17,...; 3,4,6,11,18,...; 7,8,9,12,19,...; 13,14,15,16,20,...
Ulam square spiral = 7 8 9 / 6 1 2 / 5 4 3 /...; changes of direction (right-angle) at 1 2 3 5 7 ...
From Joerg Arndt, May 10 2013: (Start)
The a(7)=13 unimodal compositions of 7 with maximal part <= 2 are
01: [ 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 ]
03: [ 1 1 1 1 2 1 ]
04: [ 1 1 1 2 1 1 ]
05: [ 1 1 1 2 2 ]
06: [ 1 1 2 1 1 1 ]
07: [ 1 1 2 2 1 ]
08: [ 1 2 1 1 1 1 ]
09: [ 1 2 2 1 1 ]
10: [ 1 2 2 2 ]
11: [ 2 1 1 1 1 1 ]
12: [ 2 2 1 1 1 ]
13: [ 2 2 2 1 ]
(End)
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 13*x^7 + 17*x^8 + ...
MAPLE
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card<r), U=Sequence(Z, card>=3)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m), m=6..62); # Zerinvary Lajos, Mar 09 2007
A033638 := proc(n)
1+floor(n^2/4) ;
end proc: # R. J. Mathar, Jul 13 2012
MATHEMATICA
a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = a[1] = 1; a[2] = 2; a[3] = 3; Array[a, 54, 0] (* Robert G. Wilson v, Mar 28 2011 *)
LinearRecurrence[{2, 0, -2, 1}, {1, 1, 2, 3}, 60] (* Robert G. Wilson v, Sep 16 2012 *)
PROG
(PARI) {a(n) = n^2\4 + 1} /* Michael Somos, Apr 03 2007 */
(Haskell)
a033638 = (+ 1) . (`div` 4) . (^ 2) -- Reinhard Zumkeller, Apr 06 2012
(Magma) [n^2 div 4 + 1: n in [0.. 50]]; // Vincenzo Librandi, Jul 31 2016
(Python)
def A033638(n): return (n**2>>2)+1 # Chai Wah Wu, Jul 27 2022
CROSSREFS
Equals A002620 + 1.
Cf. A002878, A004652, A002984, A083479, A080037 (complement, except 2).
A002522 lists the even-indexed terms of this sequence.
KEYWORD
easy,nonn
AUTHOR
Tanya Y. Berger-Wolf (tanyabw(AT)uiuc.edu)
STATUS
approved
Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.
+10
13
1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
OFFSET
0,3
COMMENTS
An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243484.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..114, flattened
EXAMPLE
T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 1;
: 9, 6;
: 21, 29, 2;
: 51, 124, 28;
: 127, 499, 241, 10;
: 323, 1933, 1667, 216, 1;
: 835, 7307, 10142, 2765, 98;
: 2188, 27166, 56748, 27214, 2637, 22;
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j<i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j<i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Cf. A048993 (for counting level steps), A242351 (for counting ascents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt and Alois P. Heinz, May 11 2014
STATUS
approved
Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.
+10
12
1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
OFFSET
0,2
COMMENTS
There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
A083480 is a variation illustrating a relationship with numeric partitions, A000041.
The rows are formed by the nonzero entries of the columns of A049597.
The coefficient of q^j in the Gaussian polynomial [n, m]_q is the number of binary words on alphabet {0,1} of length n having m 1's and j inversions. Hence T(n, k) is the number of length n binary words with exactly k inversions. - Geoffrey Critzer, May 14 2017
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017
REFERENCES
George E. Andrews, 'Theory of Partitions', 1976, page 242.
LINKS
Seiichi Manyama, Rows n = 0..48, flattened
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012
Eric Weisstein, q-Binomial Coefficient, Mathworld.
Wikipedia, q-binomial
FORMULA
T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Sum_{k=0..(n + 2) - ceiling(sqrt(4*n))} (-1)^k*T(n - k, k) = (-1)^n*A000025(n+1) = -A260460(n+1). (End)
EXAMPLE
When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
MAPLE
QBinomial := proc(n, m, q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)), i=0..m-1) ) ; expand(%) ; end:
A083906 := proc(n, k) add( QBinomial(n, m, q), m=0..n ) ; coeftayl(%, q=0, k) ; end:
for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d, ", A083906(n, k)) ; od: od: # R. J. Mathar, May 28 2009
T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
MATHEMATICA
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]], q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
PROG
(PARI) {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n, k, x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n, k | Coefficient(R!((&+[qBinom(n, k, x): k in [0..n]]) ), k) >;
[A083906(n, k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
(SageMath)
def T(n, k): # T = A083906
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
flatten([[T(n, k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
KEYWORD
nonn,tabf,changed
AUTHOR
Alford Arnold, Jun 19 2003
EXTENSIONS
Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024
STATUS
approved
Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.
+10
12
1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
OFFSET
0,6
COMMENTS
An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Row sums give A000110.
Last elements of rows give A243237.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..100, flattened
EXAMPLE
T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 11, 3;
1, 26, 25;
1, 57, 128, 17;
1, 120, 525, 229, 2;
1, 247, 1901, 1819, 172;
1, 502, 6371, 11172, 3048, 53;
1, 1013, 20291, 58847, 33065, 2751, 7;
...
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Cf. A048993 (for counting level steps), A242352 (for counting descents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt and Alois P. Heinz, May 11 2014
STATUS
approved

Search completed in 0.009 seconds