Displaying 1-7 of 7 results found.
page
1
Column 4 of an array closely related to A083480. (Both arrays have shape sequence A083479).
+20
11
5, 32, 113, 299, 664, 1309, 2366, 4002, 6423, 9878, 14663, 21125, 29666, 40747, 54892, 72692, 94809, 121980, 155021, 194831, 242396, 298793, 365194, 442870, 533195, 637650, 757827, 895433, 1052294, 1230359, 1431704, 1658536, 1913197
COMMENTS
The diagonals are finite and sum to A047970.
Values appear to be a transformation of A006468 (rooted planar maps). Also known as well-labeled trees (cf. A000168).
First differences of the conjectured polynomial formula for A006468. [From R. J. Mathar, Jun 26 2010]
FORMULA
Row sums are powers of 2.
a(n)= +6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). G.f.: x*(5+2*x-4*x^2+x^3)/(x-1)^6. a(n) = n*(n+1)*(4*n^3+51*n^2+159*n+86)/120. [From R. J. Mathar, Jun 26 2010]
EXAMPLE
The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
CROSSREFS
Cf. A000124 (column 1), A000330 (column 2), A086602 (column 3), A107600 (column 5), A107601 (column 6), A109125 (column 7), A109126 (column 8), A109820 (column 9), A108538 (column 10), A109821 (column 11), A110553 (column 12), A110624 (column 13).
T(n,k) is the number of simply connected square animals with n cells and k internal vertices (0 <= k <= A083479(n)), triangle read by rows.
+20
3
1, 1, 2, 4, 1, 11, 1, 27, 7, 1, 82, 21, 4, 250, 90, 21, 2, 815, 334, 89, 9, 1, 2685, 1311, 391, 67, 6, 9072, 4978, 1674, 324, 45, 1, 30889, 19030, 7089, 1630, 275, 23, 1, 106290, 72082, 29433, 7629, 1498, 174, 11
EXAMPLE
The table starts:
1;
1;
2;
4, 1;
11, 1;
27, 7, 1;
82, 21, 4;
250, 90, 21, 2;
815, 334, 89, 9, 1;
2685, 1311, 391, 67, 6;
9072, 4978, 1674, 324, 45, 1;
30889, 19030, 7089, 1630, 275, 23, 1;
106290, 72082, 29433, 7629, 1498, 174, 11;
...
Triangle read by rows: counts the permutations of partitions described in A083480. Both Arrays have shape sequence A083479.
+20
1
1, 2, 4, 7, 1, 11, 5, 16, 14, 2, 22, 30, 12, 29, 55, 39, 5, 37, 91, 95, 32, 1, 46, 140, 195, 113, 18, 56, 204, 357, 299, 101, 7, 67, 285, 602, 664, 357, 71, 2, 79, 385, 954, 1309, 978, 350, 41, 92, 506, 1440, 2366, 2274, 1204, 292, 18
EXAMPLE
The array begins
1
2
4
7 1
11 5
16 14 2
22 30 12
29 55 39 5
37 91 95 32 1
Quarter-squares plus 1 (that is, a(n) = A002620(n) + 1).
+10
57
1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241, 257, 273, 290, 307, 325, 343, 362, 381, 401, 421, 442, 463, 485, 507, 530, 553, 577, 601, 626, 651, 677, 703, 730, 757, 785, 813, 842
COMMENTS
Fill an infinity X infinity matrix with numbers so that 1..n^2 appear in the top left n X n corner for all n; write down the minimal elements in the rows and columns and sort into increasing order; maximize this list in the lexicographic order.
Numbers of the form n^2 + 1 or n^2 + n + 1.
Locations of right angle turns in Ulam square spiral. (End)
a(n-1) (for n >= 1) is also the number u of unique Fibonacci/Lucas type sequences generated (the total number t of these sequences being a triangular number). Sum(n+1)=t. Then u=Sum((n+1/2) minus 0.5 for odd terms) except for the initial term. E.g., u=13: (n=6)+1 = 7; then 7/2 - 0.5 =3. So u = Sum(1, 1, 1, 2, 2, 3, 3) = 13. - Marco Matosic, Mar 11 2003
Number of (3412,123)-avoiding involutions in S_n.
Schur's Theorem (1905): the maximum number of mutually commuting linearly independent complex matrices of order n is floor((n^2)/4) + 1. Jacobson gave a simpler proof 40 years later, generalizing from algebraically closed fields to arbitrary fields. 54 years after that, Mirzakhani gave an even simpler proof. - Jonathan Vos Post, Apr 03 2007
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=(-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Except for the initial two terms, A033638 gives iterates of the nonsquare function: c(n) = f(c(n-1)), where f(n) = A000037(n) = n + floor(1/2 + sqrt(n)) = n-th nonsquare, starting with c(1)=2. - Clark Kimberling, Dec 28 2010
For n >= 1: for all permutations of [0..n-1]: number of distinct values taken by Sum_{k=0..n-1} (k mod 2) * pi(k). - Joerg Arndt, Apr 22 2011
Number of (weakly) unimodal compositions of n with maximal part <= 2, see example. - Joerg Arndt, May 10 2013
Construct an infinite triangular matrix with 1's in the leftmost column and the natural numbers in all other columns but shifted down twice. Square the triangle and the sequence is the leftmost column vector. - Gary W. Adamson, Jan 27 2014
Equals the sum of terms in upward sloping diagonals of an infinite lower triangle with 1's in the leftmost column and the natural numbers in all other columns. - Gary W. Adamson, Jan 29 2014
a(n) is the number of permutations of length n avoiding both 213 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of partitions of n with no more than 2 parts > 1. - Wouter Meeussen, Feb 22 2015, revised Apr 24 2023
Number of possible values for the area of a polyomino whose perimeter is 2n + 4. - Luc Rousseau, May 10 2018
a(n) is the number of 231-avoiding even Grassmannian permutations of size n+1. - Juan B. Gil, Mar 10 2023
For n > 0, a(n) is the smallest number that requires n iterations of the map k -> k - floor(sqrt(k)) to reach 0. - Jon E. Schoenfield, Jun 24 2023
a(n) agrees with the lower matching number of the (n + 1) X (n + 1) black bishop graph from n = 1 up to at least n = 14. - Eric W. Weisstein, Dec 23 2024
FORMULA
a(n) = ceiling((n^2+3)/4) = ( (7 + (-1)^n)/2 + n^2 )/4.
G.f.: (1-x+x^3)/((1-x)^2*(1-x^2)); a(n) = a(n-1) + a(n-2) - a(n-3) + 1. - Jon Perry, Jul 07 2004
a(0) = 1; a(1) = 1; for n > 1 a(n) = a(n-1) + round(sqrt(a(n-1))). - Jonathan Vos Post, Jan 19 2006
a(n) = floor((n^2)/4) + 1.
a(0) = a(1) = 1, a(n) = a(n-1) + ceiling(sqrt(a(n-2))) for n > 1. - Jonathan Vos Post, Oct 08 2011
a(n) = floor(b(n)) with b(n) = b(n-1) + n/(1+e^(1/n)) and b(0)= 1. - Richard R. Forberg, Jun 08 2013
E.g.f.: (exp(-x) + (7 + 2*x + 2*x^2)*exp(x))/8.
EXAMPLE
First 4 rows can be taken to be 1,2,5,10,17,...; 3,4,6,11,18,...; 7,8,9,12,19,...; 13,14,15,16,20,...
Ulam square spiral = 7 8 9 / 6 1 2 / 5 4 3 /...; changes of direction (right-angle) at 1 2 3 5 7 ...
The a(7)=13 unimodal compositions of 7 with maximal part <= 2 are
01: [ 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 ]
03: [ 1 1 1 1 2 1 ]
04: [ 1 1 1 2 1 1 ]
05: [ 1 1 1 2 2 ]
06: [ 1 1 2 1 1 1 ]
07: [ 1 1 2 2 1 ]
08: [ 1 2 1 1 1 1 ]
09: [ 1 2 2 1 1 ]
10: [ 1 2 2 2 ]
11: [ 2 1 1 1 1 1 ]
12: [ 2 2 1 1 1 ]
13: [ 2 2 2 1 ]
(End)
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 13*x^7 + 17*x^8 + ...
MAPLE
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card<r), U=Sequence(Z, card>=3)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m), m=6..62); # Zerinvary Lajos, Mar 09 2007
1+floor(n^2/4) ;
MATHEMATICA
a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = a[1] = 1; a[2] = 2; a[3] = 3; Array[a, 54, 0] (* Robert G. Wilson v, Mar 28 2011 *)
CROSSREFS
A002522 lists the even-indexed terms of this sequence.
AUTHOR
Tanya Y. Berger-Wolf (tanyabw(AT)uiuc.edu)
Number T(n,k) of isoscent sequences of length n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=n+2-ceiling(2*sqrt(n+1)), read by rows.
+10
13
1, 1, 2, 4, 1, 9, 6, 21, 29, 2, 51, 124, 28, 127, 499, 241, 10, 323, 1933, 1667, 216, 1, 835, 7307, 10142, 2765, 98, 2188, 27166, 56748, 27214, 2637, 22, 5798, 99841, 299485, 227847, 44051, 1546, 2, 15511, 363980, 1514445, 1708700, 563444, 46947, 570
COMMENTS
An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Columns k=0-10 give: A001006, A243474, A243475, A243476, A243477, A243478, A243479, A243480, A243481, A243482, A243483.
Last elements of rows give A243484.
EXAMPLE
T(4,0) = 9: [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,1], [0,0,1,2], [0,0,2,2], [0,1,1,1], [0,1,1,2].
T(4,1) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
T(5,2) = 2: [0,0,2,1,0], [0,1,0,1,0].
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 1;
: 9, 6;
: 21, 29, 2;
: 51, 124, 28;
: 127, 499, 241, 10;
: 323, 1933, 1667, 216, 1;
: 835, 7307, 10142, 2765, 98;
: 2188, 27166, 56748, 27214, 2637, 22;
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j<i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j<i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Cf. A048993 (for counting level steps), A242351 (for counting ascents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.
Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.
+10
12
1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
COMMENTS
There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
A083480 is a variation illustrating a relationship with numeric partitions, A000041.
The rows are formed by the nonzero entries of the columns of A049597.
The coefficient of q^j in the Gaussian polynomial [n, m]_q is the number of binary words on alphabet {0,1} of length n having m 1's and j inversions. Hence T(n, k) is the number of length n binary words with exactly k inversions. - Geoffrey Critzer, May 14 2017
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017
REFERENCES
George E. Andrews, 'Theory of Partitions', 1976, page 242.
FORMULA
T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Sum_{k=0..(n + 2) - ceiling(sqrt(4*n))} (-1)^k*T(n - k, k) = (-1)^n* A000025(n+1) = - A260460(n+1). (End)
EXAMPLE
When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
MAPLE
QBinomial := proc(n, m, q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)), i=0..m-1) ) ; expand(%) ; end:
A083906 := proc(n, k) add( QBinomial(n, m, q), m=0..n ) ; coeftayl(%, q=0, k) ; end:
T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
MATHEMATICA
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]], q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
PROG
(PARI) {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n, k, x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n, k | Coefficient(R!((&+[qBinom(n, k, x): k in [0..n]]) ), k) >;
(SageMath)
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
flatten([[T(n, k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
CROSSREFS
Cf. A000025, A000034, A000041, A016116, A029552, A033638, A060546, A063746, A077028, A083479, A083480, A098613, A260460.
Number T(n,k) of isoscent sequences of length n with exactly k ascents; triangle T(n,k), n>=0, 0<=k<=n+3-ceiling(2*sqrt(n+2)), read by rows.
+10
12
1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 128, 17, 1, 120, 525, 229, 2, 1, 247, 1901, 1819, 172, 1, 502, 6371, 11172, 3048, 53, 1, 1013, 20291, 58847, 33065, 2751, 7, 1, 2036, 62407, 280158, 275641, 56905, 1422, 1, 4083, 187272, 1242859, 1945529, 771451, 61966, 436
COMMENTS
An isoscent sequence of length n is an integer sequence [s(1),...,s(n)] with s(1) = 0 and 0 <= s(i) <= 1 plus the number of level steps in [s(1),...,s(i)].
Columns k=0-10 give: A000012, A000295, A243228, A243229, A243230, A243231, A243232, A243233, A243234, A243235, A243236.
Last elements of rows give A243237.
EXAMPLE
T(4,0) = 1: [0,0,0,0].
T(4,1) = 11: [0,0,0,1], [0,0,0,2], [0,0,0,3], [0,0,1,0], [0,0,1,1], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,1,0], [0,1,1,1].
T(4,2) = 3: [0,0,1,2], [0,1,0,1], [0,1,1,2].
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4;
1, 11, 3;
1, 26, 25;
1, 57, 128, 17;
1, 120, 525, 229, 2;
1, 247, 1901, 1819, 172;
1, 502, 6371, 11172, 3048, 53;
1, 1013, 20291, 58847, 33065, 2751, 7;
...
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, expand(add(
`if`(j>i, x, 1) *b(n-1, j, t+`if`(j=i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 0$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j>i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Cf. A048993 (for counting level steps), A242352 (for counting descents), A137251 (ascent sequences counting ascents), A238858 (ascent sequences counting descents), A242153 (ascent sequences counting level steps), A083479.
Search completed in 0.009 seconds
|