[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000104
Number of n-celled free polyominoes without holes.
(Formerly M1424 N0560)
36
1, 1, 1, 2, 5, 12, 35, 107, 363, 1248, 4460, 16094, 58937, 217117, 805475, 3001127, 11230003, 42161529, 158781106, 599563893, 2269506062, 8609442688, 32725637373, 124621833354, 475368834568, 1816103345752, 6948228104703, 26618671505989, 102102788362303
OFFSET
0,4
REFERENCES
J. S. Madachy, Pentominoes - Some Solved and Unsolved Problems, J. Rec. Math., 2 (1969), 181-188.
George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Elena V. Konstantinova and Maxim V. Vidyuk, Discriminating tests of information and topological indices. Animals and trees, J. Chem. Inf. Comput. Sci. 43 (2003), 1860-1871.
Lucia Moura and Ivan Stojmenovic, Backtracking and Isomorph-Free Generation of Polyhexes, Table 2.2 on p. 55 of Handbook of Applied Algorithms (2008).
W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278
Tomás Oliveira e Silva, Enumeration of polyominoes
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy)
R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962), 1-20.
FORMULA
a(n) = A000105(n) - A001419(n). - John Mason, Sep 06 2022
a(n) = (4*A056879(n) + 4*A056881(n) + 4*A056883(n) + 6*A056880(n) + 6*A056882(n) + 6*A357647(n) + 7*A357648(n) + A006724(n)) / 8. - John Mason, Oct 10 2022
CROSSREFS
Cf. A000105, row sums of A308300, A006746, A056877, A006748, A056878, A006747, A006749, A054361, A070765 (polyiamonds), A018190 (polyhexes), A266549 (by perimeter).
Sequence in context: A054359 A148287 A036357 * A342537 A000105 A055192
KEYWORD
nonn,nice,hard
EXTENSIONS
Extended to n=26 by Tomás Oliveira e Silva
a(27)-a(28) from Tomás Oliveira e Silva's page added by Andrey Zabolotskiy, Oct 02 2022
STATUS
approved