Displaying 1-10 of 32 results found.
Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.
+10
28
7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
COMMENTS
4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
EXAMPLE
a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 6]==1 &]]];
];
PROG
(PARI) Q=1; for(n=1, 11, f=factor(4*Q^2+3); for(i=1, #f~, p=f[i, 1]; if(p%6==1, break)); print1(p", "); Q*=p) \\ Jens Kruse Andersen, Jun 30 2014
EXTENSIONS
More terms from Nick Hobson, Nov 14 2006
Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.
+10
25
5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
EXAMPLE
a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
MATHEMATICA
a={5}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4+q^2][[All, 1]], Mod[#, 8]==5 &]]];
];
PROG
(PARI) lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k, 1]; break); ); print1(v[n], ", "); ); } \\ Michel Marcus, Oct 27 2014
Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.
+10
20
3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041, 29, 24040758847310589568111822987, 154351, 89
COMMENTS
The first five terms comprise the known Fermat primes: A019434.
EXAMPLE
a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
MATHEMATICA
a={3}; q=1;
For[n=2, n<=20, n++,
q=q*Last[a];
AppendTo[a, Min[FactorInteger[q+2][[All, 1]]]];
];
Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence.
+10
19
3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203
COMMENTS
2+Q^2 always has a prime divisor congruent to 3 modulo 8.
REFERENCES
D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
EXAMPLE
a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11.
MATHEMATICA
a = {3}; q = 1;
For[n = 2, n ≤ 5, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#,
8] \[Equal] 3 &]]];
];
PROG
(PARI) lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022
Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q.
+10
19
53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729
COMMENTS
All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q.
MATHEMATICA
a={53}; q=1;
For[n=2, n<=5, n++,
q=q*Last[a]; r=13*q;
AppendTo[a, Min[Select[FactorInteger[(r^13-1)/(r-1)][[All, 1]], Mod[#, 26]==1 &]]];
];
Primes of the form 22k+1 generated recursively. Initial prime is 23. General term is a(n) = Min {p is prime; p divides (R^11 - 1)/(R - 1); p == 1 (mod 11)}, where Q is the product of previous terms in the sequence and R = 11*Q.
+10
18
23, 4847239, 2971, 3936923, 9461, 1453, 331, 81373909, 89, 920771904664817214817542307, 353, 401743, 17088192002665532981, 11617
COMMENTS
All prime divisors of (R^11 - 1)/(R - 1) different from 11 are congruent to 1 modulo 22.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(3) = 2971 is the smallest prime divisor congruent to 1 mod 22 of (R^11-1)/(R-1) =
7693953366218628230903493622259922359469805176129784863956847906415055607909988155588181877
= 2971 * 357405886421 * 914268562437006833738317047149 * 7925221522553970071463867283158786415606996703, where Q = 23 * 4847239, and R = 11*Q.
MATHEMATICA
a={23}; q=1;
For[n=2, n<=2, n++,
q=q*Last[a]; r=11*q;
AppendTo[a, Min[Select[FactorInteger[(r^11-1)/(r-1)][[All, 1]], Mod[#, 11]==1 &]]];
];
4th term in Euclid-Mullin prime sequence started with n-th prime (cf. A000945).
+10
10
43, 43, 3, 43, 3, 79, 3, 5, 3, 3, 11, 223, 3, 7, 3, 3, 827, 367, 13, 3, 439, 5, 3, 3, 11, 5, 619, 3, 5, 3, 7, 3, 3, 5, 5, 907, 23, 11, 3, 3, 3, 1087, 3, 19, 3, 5, 7, 13, 3, 5, 3, 3, 1447, 3, 3, 3, 3767, 1627, 1663, 3, 1699, 3, 19, 5, 1879, 3, 1987, 7, 3, 5, 4943, 3, 2203, 2239, 5, 23
COMMENTS
First term in Euclid-Mullin sequence is p (say), 2nd term (if p odd) is 2, 3rd term is A023592.
EXAMPLE
E.g., (5,2,11,3), (89,2,179,3), (17,2,5,3), (2,3,7,43), (61,2,3,367).
MATHEMATICA
a[n_] := (Clear[f]; f[1] = Prime[n]; f[k_] := f[k] = FactorInteger[Product[f[i], {i, 1, k-1}]+1][[1, 1]]; f[4]); Table[a[n], {n, 1, 76}] (* Jean-François Alcover, Feb 05 2014 *)
Primes p for which A051614(p) is 3 but are not Sophie Germain primes.
+10
6
17, 47, 71, 107, 137, 167, 197, 227, 257, 263, 317, 347, 401, 449, 467, 557, 569, 587, 599, 617, 647, 677, 701, 797, 827, 839, 857, 863, 881, 887, 929, 947, 971, 977, 1061, 1097, 1181, 1187, 1217, 1259, 1277, 1283, 1307, 1367, 1373, 1427, 1433, 1487, 1493
FORMULA
p values so that F(2*p*F(2*p+1)+1)=3 and 2p+1 is not prime; F(x) is the least prime divisor of x.
a(n) is the third term in Euclid-Mullin (EM) prime sequence initiated with n-th prime.
+10
6
7, 7, 11, 3, 23, 3, 5, 3, 47, 59, 3, 3, 83, 3, 5, 107, 7, 3, 3, 11, 3, 3, 167, 179, 3, 7, 3, 5, 3, 227, 3, 263, 5, 3, 13, 3, 3, 3, 5, 347, 359, 3, 383, 3, 5, 3, 3, 3, 5, 3, 467, 479, 3, 503, 5, 17, 7, 3, 3, 563, 3, 587, 3, 7, 3, 5, 3, 3, 5, 3, 7, 719, 3, 3, 3, 13, 19, 3, 11, 3, 839, 3, 863
EXAMPLE
First term is p[n], 2nd equals 2; 3rd term is given here as largest p-divisor of 2p+1 [occasionally safe primes, A005385];
MATHEMATICA
a[x_]:=First[Flatten [FactorInteger[Apply[Times, Table[a[j], {j, 1, x-1}]]+1]]]; ta=Table[0, {168}]; a[1]=1; Do[{a[1]=Prime[j], el=10}; Print[a[el]; ta[[j]]=a[el]; j++ ], {j, 1, 168}]; ta
a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.
+10
4
5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 13, 8693, 1997, 6029, 61, 3181837, 113, 181, 1934689, 6143090225314378441493352126119201470973493456817556328833988172277, 4733, 3617, 41, 68141, 37, 51473, 17, 821, 598201519454797, 157, 9689, 2357, 757, 149, 293, 5261
COMMENTS
Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - Daran Gill, Mar 23 2013
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
EXAMPLE
a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
MATHEMATICA
t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* T. D. Noe, Mar 27 2013 *)
EXTENSIONS
Seventeen more terms, a(17)-a(33), added by Daran Gill, Mar 23 2013
Search completed in 0.017 seconds
|