[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a051335 -id:a051335
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.
+10
28
7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
OFFSET
1,1
COMMENTS
4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
LINKS
EXAMPLE
a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 6]==1 &]]];
];
a (* Robert Price, Jul 16 2015 *)
PROG
(PARI) Q=1; for(n=1, 11, f=factor(4*Q^2+3); for(i=1, #f~, p=f[i, 1]; if(p%6==1, break)); print1(p", "); Q*=p) \\ Jens Kruse Andersen, Jun 30 2014
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
More terms from Nick Hobson, Nov 14 2006
More terms from Sean A. Irvine, Oct 23 2014
STATUS
approved
Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.
+10
25
5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
OFFSET
1,1
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
EXAMPLE
a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
MATHEMATICA
a={5}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4+q^2][[All, 1]], Mod[#, 8]==5 &]]];
];
a (* Robert Price, Jul 16 2015 *)
PROG
(PARI) lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k, 1]; break); ); print1(v[n], ", "); ); } \\ Michel Marcus, Oct 27 2014
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2014
STATUS
approved
Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.
+10
20
3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041, 29, 24040758847310589568111822987, 154351, 89
OFFSET
1,1
COMMENTS
The first five terms comprise the known Fermat primes: A019434.
LINKS
EXAMPLE
a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
MATHEMATICA
a={3}; q=1;
For[n=2, n<=20, n++,
q=q*Last[a];
AppendTo[a, Min[FactorInteger[q+2][[All, 1]]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved
Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence.
+10
19
3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203
OFFSET
1,1
COMMENTS
2+Q^2 always has a prime divisor congruent to 3 modulo 8.
REFERENCES
D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
EXAMPLE
a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11.
MATHEMATICA
a = {3}; q = 1;
For[n = 2, n ≤ 5, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#,
8] \[Equal] 3 &]]];
];
a (* Robert Price, Jul 14 2015 *)
PROG
(PARI) lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
a(10) from Robert Price, Jul 04 2015
a(11) from Robert Price, Jul 05 2015
STATUS
approved
Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q.
+10
19
53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729
OFFSET
1,1
COMMENTS
All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q.
MATHEMATICA
a={53}; q=1;
For[n=2, n<=5, n++,
q=q*Last[a]; r=13*q;
AppendTo[a, Min[Select[FactorInteger[(r^13-1)/(r-1)][[All, 1]], Mod[#, 26]==1 &]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Sean A. Irvine, Jun 24 2011
STATUS
approved
Primes of the form 22k+1 generated recursively. Initial prime is 23. General term is a(n) = Min {p is prime; p divides (R^11 - 1)/(R - 1); p == 1 (mod 11)}, where Q is the product of previous terms in the sequence and R = 11*Q.
+10
18
23, 4847239, 2971, 3936923, 9461, 1453, 331, 81373909, 89, 920771904664817214817542307, 353, 401743, 17088192002665532981, 11617
OFFSET
1,1
COMMENTS
All prime divisors of (R^11 - 1)/(R - 1) different from 11 are congruent to 1 modulo 22.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(3) = 2971 is the smallest prime divisor congruent to 1 mod 22 of (R^11-1)/(R-1) =
7693953366218628230903493622259922359469805176129784863956847906415055607909988155588181877
= 2971 * 357405886421 * 914268562437006833738317047149 * 7925221522553970071463867283158786415606996703, where Q = 23 * 4847239, and R = 11*Q.
MATHEMATICA
a={23}; q=1;
For[n=2, n<=2, n++,
q=q*Last[a]; r=11*q;
AppendTo[a, Min[Select[FactorInteger[(r^11-1)/(r-1)][[All, 1]], Mod[#, 11]==1 &]]];
];
a (* Robert Price, Jul 14 2015 *)
KEYWORD
more,nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Max Alekseyev, May 29 2009
STATUS
approved
4th term in Euclid-Mullin prime sequence started with n-th prime (cf. A000945).
+10
10
43, 43, 3, 43, 3, 79, 3, 5, 3, 3, 11, 223, 3, 7, 3, 3, 827, 367, 13, 3, 439, 5, 3, 3, 11, 5, 619, 3, 5, 3, 7, 3, 3, 5, 5, 907, 23, 11, 3, 3, 3, 1087, 3, 19, 3, 5, 7, 13, 3, 5, 3, 3, 1447, 3, 3, 3, 3767, 1627, 1663, 3, 1699, 3, 19, 5, 1879, 3, 1987, 7, 3, 5, 4943, 3, 2203, 2239, 5, 23
OFFSET
1,1
COMMENTS
First term in Euclid-Mullin sequence is p (say), 2nd term (if p odd) is 2, 3rd term is A023592.
LINKS
EXAMPLE
E.g., (5,2,11,3), (89,2,179,3), (17,2,5,3), (2,3,7,43), (61,2,3,367).
MATHEMATICA
a[n_] := (Clear[f]; f[1] = Prime[n]; f[k_] := f[k] = FactorInteger[Product[f[i], {i, 1, k-1}]+1][[1, 1]]; f[4]); Table[a[n], {n, 1, 76}] (* Jean-François Alcover, Feb 05 2014 *)
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
Primes p for which A051614(p) is 3 but are not Sophie Germain primes.
+10
6
17, 47, 71, 107, 137, 167, 197, 227, 257, 263, 317, 347, 401, 449, 467, 557, 569, 587, 599, 617, 647, 677, 701, 797, 827, 839, 857, 863, 881, 887, 929, 947, 971, 977, 1061, 1097, 1181, 1187, 1217, 1259, 1277, 1283, 1307, 1367, 1373, 1427, 1433, 1487, 1493
OFFSET
1,1
FORMULA
p values so that F(2*p*F(2*p+1)+1)=3 and 2p+1 is not prime; F(x) is the least prime divisor of x.
CROSSREFS
Cf. A000945, A051309-A051335, A005384 (Sophie Germain primes).
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name corrected by Sean A. Irvine, Sep 22 2021
STATUS
approved
a(n) is the third term in Euclid-Mullin (EM) prime sequence initiated with n-th prime.
+10
6
7, 7, 11, 3, 23, 3, 5, 3, 47, 59, 3, 3, 83, 3, 5, 107, 7, 3, 3, 11, 3, 3, 167, 179, 3, 7, 3, 5, 3, 227, 3, 263, 5, 3, 13, 3, 3, 3, 5, 347, 359, 3, 383, 3, 5, 3, 3, 3, 5, 3, 467, 479, 3, 503, 5, 17, 7, 3, 3, 563, 3, 587, 3, 7, 3, 5, 3, 3, 5, 3, 7, 719, 3, 3, 3, 13, 19, 3, 11, 3, 839, 3, 863
OFFSET
1,1
FORMULA
a(n)= a(n-1)+ A008472(a(n-1)) - Ctibor O. Zizka, May 26 2008
EXAMPLE
First term is p[n], 2nd equals 2; 3rd term is given here as largest p-divisor of 2p+1 [occasionally safe primes, A005385];
4th terms listed in A051614; further terms are in A094461-A094463.
MATHEMATICA
a[x_]:=First[Flatten [FactorInteger[Apply[Times, Table[a[j], {j, 1, x-1}]]+1]]]; ta=Table[0, {168}]; a[1]=1; Do[{a[1]=Prime[j], el=10}; Print[a[el]; ta[[j]]=a[el]; j++ ], {j, 1, 168}]; ta
CROSSREFS
Except for first term [which is A000945(3)], the same as A023592.
KEYWORD
nonn
AUTHOR
Labos Elemer, May 06 2004
STATUS
approved
a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.
+10
4
5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 13, 8693, 1997, 6029, 61, 3181837, 113, 181, 1934689, 6143090225314378441493352126119201470973493456817556328833988172277, 4733, 3617, 41, 68141, 37, 51473, 17, 821, 598201519454797, 157, 9689, 2357, 757, 149, 293, 5261
OFFSET
1,1
COMMENTS
Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - Daran Gill, Mar 23 2013
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
EXAMPLE
a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
MATHEMATICA
t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* T. D. Noe, Mar 27 2013 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
Eight more terms, a(9)-a(16), from Max Alekseyev, Apr 27 2009
Seventeen more terms, a(17)-a(33), added by Daran Gill, Mar 23 2013
STATUS
approved

Search completed in 0.017 seconds