[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a056040 -id:a056040
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = lcm{1,2,...,n} / swinging_factorial(n) = A003418(n) / A056040(n).
+20
49
1, 1, 1, 1, 2, 2, 3, 3, 12, 4, 10, 10, 30, 30, 105, 7, 56, 56, 252, 252, 1260, 60, 330, 330, 1980, 396, 2574, 286, 2002, 2002, 15015, 15015, 240240, 7280, 61880, 1768, 15912, 15912, 151164, 3876, 38760, 38760, 406980, 406980, 4476780, 99484, 1144066
OFFSET
0,5
COMMENTS
Characterization: Let e_{p}(m) denote the exponent of the prime p in the prime factorization of m and [.] denote the Iverson bracket, then
e_{p}(a(n)) = Sum_{k>=1} [floor(n/p^k) is even].
This implies, among other things, that no prime > floor(n/2) can divide a(n). The prime exponents e_{2}(a(2n)) give Guy Steele's sequence GS(5,3) A080100.
Asymptotics: log a(n) ~ n(1 - log 2). It is conjectured that log a(n) ~ n(1 - log 2) + O(n^{1/2+eps}) for all eps > 0.
Bounds: A056040(floor(n/3)) <= a(n) <= A056040(floor(n/2)) if n >= 285.
LINKS
FORMULA
a(n) = 2^(-n)*Product_{1<=k<=n} A014963(k)*(k/2)^((-1)^k).
MAPLE
a := proc(n) local A014963, k;
A014963 := proc(n) if n < 2 then 1 else numtheory[factorset](n);
if 1 < nops(%) then 1 else op(%) fi fi end;
mul(A014963(k)*(k/2)^((-1)^k), k=1..n)/2^n end;
# Also:
A180000 := proc(n) local lcm, sf;
lcm := ilcm(seq(i, i=1..n));
sf := n!/iquo(n, 2)!^2;
lcm/sf end;
MATHEMATICA
a[0] = 1; a[n_] := LCM @@ Range[n] / (n! / Floor[n/2]!^2); Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 23 2013 *)
PROG
(PARI) L=1; X(n)={ ispower(n, , &n); if(isprime(n), n, 1); }
Y(n)={ a=X(n); b=if(bitand(1, n), a, a*(n/2)^2); L=(b*L)/n; }
A180000_list(n)={ L=1; vector(n, m, Y(m)); } \\ for n>0
(Sage)
def Exp(m, n) :
s = 0; p = m; q = n//p
while q > 0 :
if is_even(q) :
s = s + 1
p = p * m
q = n//p
return s
def A180000(n) :
A = [1, 1, 1, 1, 2, 2, 3, 3, 12]
if n < 9 : return A[n]
R = []; r = isqrt(n)
P = Primes(); p = P.first()
while p <= n//2 :
if p <= r : R.append(p^Exp(p, n))
elif p <= n//3 :
if is_even(n//p) : R.append(p)
else : R.append(p)
p = P.next(p)
return mul(x for x in R)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 17 2010
STATUS
approved
Product of first n swinging factorials (A056040).
+20
9
1, 1, 2, 12, 72, 2160, 43200, 6048000, 423360000, 266716800000, 67212633600000, 186313420339200000, 172153600393420800000, 2067909047925770649600000, 7097063852481244869427200000
OFFSET
0,3
COMMENTS
With the definition of the Hankel transform as given by Luschny (see link) which uniquely determines the original sequence (provided that all determinants are not zero) this is also 1/ the Hankel determinant of 1/(n+1) (assuming (0,0)-based matrices).
a(2*n-1) is 1/determinant of the Hilbert matrix H(n) (A005249).
a(2*n) = A067689(n). - Peter Luschny, Sep 18 2012
MAPLE
a := proc(n) local i; mul(A056040(i), i=0..n) end;
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 26 2013 *)
PROG
(Sage)
def A056040(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (0..n))
[A056040(i) for i in (0..14)] # Peter Luschny, Sep 18 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 21 2009
STATUS
approved
Subswing - the inverse binomial transform of the swinging factorial (A056040).
+20
9
1, 0, 1, 2, -9, 44, -165, 594, -2037, 6824, -22437, 72830, -234047, 746316, -2364947, 7455798, -23405085, 73207728, -228275949, 709906518, -2202557691, 6819616020, -21076580511, 65032888998, -200369138571, 616531573224, -1894784517675, 5816886949874
OFFSET
0,4
COMMENTS
Analog to the subfactorial A000166.
LINKS
FORMULA
E.g.f.: exp(-x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)*(k!/(floor(k/2)!)^2). - G. C. Greubel, Aug 01 2017
a(n) ~ -(-1)^n * sqrt(n) * 3^(n - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Oct 31 2017
D-finite with recurrence n*a(n) +5*(n-1)*a(n-1) +(n-4)*a(n-2) +(-13*n+23)*a(n-3) +6*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 04 2023
MAPLE
a := proc(n) local k: add((-1)^(n-k)*binomial(n, k)*(k!/iquo(k, 2)!^2), k=0..n) end:
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 28 2013 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(k!/((k\2)!)^2)), ", ")) \\ G. C. Greubel, Aug 01 2017
CROSSREFS
Row sums of A163649. Cf. A056040, A000166.
KEYWORD
sign
AUTHOR
Peter Luschny, Aug 02 2009
STATUS
approved
Run Length Transform of swinging factorials (A056040).
+20
9
1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 6, 30, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 6, 6, 30, 20, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1
OFFSET
0,4
COMMENTS
For the definition of the Run Length Transform see A246595.
LINKS
FORMULA
a(2^n-1) = n$ where n$ is the swinging factorial of n, A056040(n).
MATHEMATICA
f[n_] := n!/Quotient[n, 2]!^2; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* Jean-François Alcover, Jul 11 2017 *)
PROG
(Sage) # uses[RLT from A246660]
A246661_list = lambda len: RLT(lambda n: factorial(n)/factorial(n//2)^2, len)
A246661_list(88)
(Python)
# use RLT function from A278159
from math import factorial
def A246661(n): return RLT(n, lambda m: factorial(m)//factorial(m//2)**2) # Chai Wah Wu, Feb 04 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Peter Luschny, Sep 07 2014
STATUS
approved
Swinging Wilson quotients ((p-1)$ +(-1)^floor((p+2)/2))/p, p prime. Here '$' denotes the swinging factorial function (A056040).
+20
7
1, 1, 1, 3, 23, 71, 757, 2559, 30671, 1383331, 5003791, 245273927, 3362110459, 12517624987, 175179377183, 9356953451851, 509614686432899, 1938763632210843, 107752663194272623
OFFSET
1,4
LINKS
M. E. Bassett, S. Majid, Finite noncommutative geometries related to F_p[x], arXiv:1603.00426 [math.QA], 2016.
Peter Luschny, Swinging Primes.
EXAMPLE
The 5th prime is 11, (11-1)$ = 252, the remainder term is (-1)^floor((11+2)/2)=1. So the quotient (252+1)/11 = 23 is the 5th member of the sequence.
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
WQ := proc(f, r, n) map(p->(f(p-1)+r(p))/p, select(isprime, [$1..n])) end:
A163210 := n -> WQ(swing, p->(-1)^iquo(p+2, 2), n);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 28 2013 *)
a[p_] := (Binomial[p-1, (p-1)/2] - (-1)^((p-1)/2)) / p
Join[{1, 1}, a[Prime[Range[3, 20]]]] (* Peter Luschny, May 13 2017 *)
PROG
(PARI) a(n, p=prime(n)) = ((p-1)!/((p-1)\2)!^2 - (-1)^(p\2))/p \\ David A. Corneth, May 13 2017
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 24 2009
STATUS
approved
Odd part of the swinging factorial A056040.
+20
7
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195, 9917826435, 583401555, 20419054425, 2268783825
OFFSET
0,4
COMMENTS
Let n$ denote the swinging factorial. a(n) = n$ / 2^sigma(n) where sigma(n) is the exponent of 2 in the prime-factorization of n$. sigma(n) can be computed as the number of '1's in the base 2 representation of floor(n/2).
If n is even then a(n) is the numerator of the reduced ratio (n-1)!!/n!! = A001147(n-1)/A000165(n), and if n is odd then a(n) is the numerator of the reduced ratio n!!/(n-1)!! = A001147(n)/A000165(n-1). The denominators for each ratio should be compared to A060818. Here all ratios are reduced. - Anthony Hernandez, Feb 05 2020 [See the Mathematica program for a more compact form of the formula. Peter Luschny, Mar 01 2020 ]
LINKS
FORMULA
a(2*n) = A001790(n).
a(2*n+1) = A001803(n).
a(n) = a(n-1)*n^((-1)^(n+1))*2^valuation(n, 2) for n > 0. - Peter Luschny, Sep 29 2019
EXAMPLE
11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 3^2*7*11 = 2772/4 = 693.
From Anthony Hernandez, Feb 04 2019: (Start)
a(7) = numerator((1*3*5*7)/(2*4*6)) = 35;
a(8) = numerator((1*3*5*7)/(2*4*6*8)) = 35;
a(9) = numerator((1*3*5*7*9)/(2*4*6*8)) = 315;
a(10) = numerator((1*3*5*7*9)/(2*4*6*8*10)) = 63. (End)
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i, i= convert(iquo(n, 2), base, 2))):
a := n -> swing(n)/sigma(n);
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/ f!]; a[n_] := With[{s = sf[n]}, s/2^IntegerExponent[s, 2]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)
r[n_] := (n - Mod[n - 1, 2])!! /(n - 1 + Mod[n - 1, 2])!! ;
Table[r[n], {n, 0, 36}] // Numerator (* Peter Luschny, Mar 01 2020 *)
PROG
(Sage) # uses[A000120]
@CachedFunction
def swing(n):
if n == 0: return 1
return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
A163590 = lambda n: swing(n)/2^A000120(n//2)
[A163590(n) for n in (0..31)] # Peter Luschny, Nov 19 2012
# Alternatively:
(Sage)
@cached_function
def A163590(n):
if n == 0: return 1
return A163590(n - 1) * n^((-1)^(n + 1)) * 2^valuation(n, 2)
print([A163590(n) for n in (0..31)]) # Peter Luschny, Sep 29 2019
(PARI)
A163590(n) = {
my(a = vector(n+1)); a[1] = 1;
for(n = 1, n,
a[n+1] = a[n]*n^((-1)^(n+1))*2^valuation(n, 2));
a } \\ Peter Luschny, Sep 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 01 2009
STATUS
approved
Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial inverse. Same as interpolating the central trinomial coefficients (A002426) with the central binomial coefficients (A000984).
+20
6
1, 1, 2, 3, 4, 6, 7, 10, 14, 20, 19, 26, 36, 50, 70, 51, 70, 96, 132, 182, 252, 141, 192, 262, 358, 490, 672, 924, 393, 534, 726, 988, 1346, 1836, 2508, 3432, 1107, 1500, 2034, 2760, 3748, 5094, 6930, 9438, 12870
OFFSET
0,3
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040).
This is also the square array of central binomial coefficients A000984 in column 0 and higher (first: A051924, second, etc.) differences in subsequent columns, read by antidiagonals. - M. F. Hasler, Nov 15 2019
LINKS
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
EXAMPLE
Triangle begins
1;
1, 2;
3, 4, 6;
7, 10, 14, 20;
19, 26, 36, 50, 70;
51, 70, 96, 132, 182, 252;
141, 192, 262, 358, 490, 672, 924;
From M. F. Hasler, Nov 15 2019: (Start)
The square array having central binomial coefficients A000984 in column 0 and higher differences in subsequent columns (col. 1 = A051924) starts:
1 1 3 7 19 51 ...
2 4 10 26 70 192 ...
6 14 36 96 262 726 ...
20 50 132 358 988 2760 ...
70 182 490 1346 3748 10540 ...
252 672 1836 5094 14288 40404 ...
(...)
Read by falling antidiagonals this yields the same sequence. (End)
MAPLE
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
a := n -> DiffTria(k->swing(2*k), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved
Swinging primes: primes which are within 1 of a swinging factorial (A056040).
+20
5
2, 3, 5, 7, 19, 29, 31, 71, 139, 251, 631, 3433, 12011, 48619, 51479, 51481, 2704157, 155117519, 280816201, 4808643121, 35345263801, 81676217699, 1378465288199, 2104098963721, 5651707681619, 94684453367401, 386971244197199, 1580132580471899, 1580132580471901
OFFSET
1,1
COMMENTS
Union of A163075 and A163076.
LINKS
EXAMPLE
3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.)
MAPLE
# Seq with arguments <= n:
a := proc(n) select(isprime, map(x -> A056040(x)+1, [$1..n]));
select(isprime, map(x -> A056040(x)-1, [$1..n]));
sort(convert(convert(%%, set) union convert(%, set), list)) end:
MATHEMATICA
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 21 2009
EXTENSIONS
More terms from Jinyuan Wang, Mar 22 2020
STATUS
approved
Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).
+20
5
2, 3, 7, 31, 71, 631, 3433, 51481, 2704157, 280816201, 4808643121, 35345263801, 2104098963721, 94684453367401, 1580132580471901, 483701705079089804581, 6892620648693261354601, 410795449442059149332177041, 2522283613639104833370312431401
OFFSET
1,1
LINKS
Peter Luschny, Swinging Primes.
EXAMPLE
Since 3$ = 4$ = 6 the prime 7 is listed, however only once.
MAPLE
a := proc(n) select(isprime, map(x -> A056040(x)+1, [$1..n])) end:
MATHEMATICA
Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
Cf. A056040, A088332, A163077 (arguments k), A163074, A163076.
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 21 2009
EXTENSIONS
More terms from Jinyuan Wang, Mar 22 2020
STATUS
approved
Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse.
+20
5
1, 5, 6, 19, 24, 30, 67, 86, 110, 140, 227, 294, 380, 490, 630, 751, 978, 1272, 1652, 2142, 2772, 2445, 3196, 4174, 5446, 7098, 9240, 12012, 7869, 10314, 13510, 17684, 23130, 30228, 39468, 51480
OFFSET
0,2
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let
T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
EXAMPLE
1
5, 6
19, 24, 30
67, 86, 110, 140
227, 294, 380, 490, 630
751, 978, 1272, 1652, 2142, 2772
2445, 3196, 4174, 5446, 7098, 9240, 12012
MAPLE
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
a := n -> DiffTria(k->swing(2*k+1), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved

Search completed in 0.396 seconds