# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a163085 Showing 1-1 of 1 %I A163085 #17 Jun 26 2013 10:55:11 %S A163085 1,1,2,12,72,2160,43200,6048000,423360000,266716800000,67212633600000, %T A163085 186313420339200000,172153600393420800000,2067909047925770649600000, %U A163085 7097063852481244869427200000 %N A163085 Product of first n swinging factorials (A056040). %C A163085 With the definition of the Hankel transform as given by Luschny (see link) which uniquely determines the original sequence (provided that all determinants are not zero) this is also 1/ the Hankel determinant of 1/(n+1) (assuming (0,0)-based matrices). %C A163085 a(2*n-1) is 1/determinant of the Hilbert matrix H(n) (A005249). %C A163085 a(2*n) = A067689(n). - _Peter Luschny_, Sep 18 2012 %H A163085 Peter Luschny, SequenceTransformations %p A163085 a := proc(n) local i; mul(A056040(i),i=0..n) end; %t A163085 a[0] = 1; a[n_] := a[n] = a[n-1]*n!/Floor[n/2]!^2; Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jun 26 2013 *) %o A163085 (Sage) %o A163085 def A056040(n): %o A163085 swing = lambda n: factorial(n)/factorial(n//2)^2 %o A163085 return mul(swing(i) for i in (0..n)) %o A163085 [A056040(i) for i in (0..14)] # _Peter Luschny_, Sep 18 2012 %Y A163085 Cf. A056040, A163086, A055462, A000178. %K A163085 nonn %O A163085 0,3 %A A163085 _Peter Luschny_, Jul 21 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE