[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a033584 -id:a033584
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 14*n^2.
+10
23
0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011
FORMULA
a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[14*n^2, {n, 0, 45}] (* Amiram Eldar, Feb 03 2021 *)
PROG
(PARI) A144555(n)=14*n^2 \\ M. F. Hasler, Oct 31 2014
CROSSREFS
See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 01 2009
STATUS
approved
a(n) = 17*n^2.
+10
15
0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
OFFSET
0,2
COMMENTS
First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018
FORMULA
G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)
MAPLE
seq(17*n^2, n=0..45); # Muniru A Asiru, Jun 29 2018
MATHEMATICA
Table[17 n^2, {n, 0, 40}]
PROG
(Magma) [17*n^2: n in [0..40]];
(PARI) a(n)=17*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..45], n->17*n^2); # Muniru A Asiru, Jun 29 2018
(Scala) for (i <- 0 to 50) yield 17 * (i * i) // Alonso del Arte, Jun 29 2018
CROSSREFS
Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 03 2014
STATUS
approved
a(n) = n*(11*n-5)/2.
+10
14
0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
OFFSET
0,2
COMMENTS
Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...
FORMULA
G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)
MATHEMATICA
Table[n (11 n - 5)/2, {n, 0, 50}]
CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 17}, 50] (* Harvey P. Dale, Jan 14 2019 *)
PROG
(Magma) [n*(11*n-5)/2: n in [0..50]];
(Magma) I:=[0, 3, 17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
(PARI) a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. sequences in Comments lines.
First differences are in A017425.
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 11 2013
STATUS
approved
a(n) = 22*n^2.
+10
9
0, 22, 88, 198, 352, 550, 792, 1078, 1408, 1782, 2200, 2662, 3168, 3718, 4312, 4950, 5632, 6358, 7128, 7942, 8800, 9702, 10648, 11638, 12672, 13750, 14872, 16038, 17248, 18502, 19800, 21142, 22528, 23958, 25432, 26950, 28512, 30118, 31768, 33462, 35200, 36982, 38808
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 22, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195318 in the same spiral.
Surface area of a rectangular prism with dimensions n, 2n and 3n. - Wesley Ivan Hurt, Apr 10 2015
FORMULA
a(n) = 22*A000290(n) = 11*A001105(n) = 2*A033584(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Sep 19 2011
G.f.: 22*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Apr 10 2015
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 22*x*(1 + x)*exp(x).
a(n) = n*A008604(n) = A195149(2*n). (End)
MAPLE
A195323:=n->22*n^2: seq(A195323(n), n=0..80); # Wesley Ivan Hurt, Apr 10 2015
MATHEMATICA
22Range[0, 50]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 22, 88}, 50] (* Harvey P. Dale, Sep 19 2011 *)
PROG
(Magma) [22*n^2 : n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
(PARI) vector(50, n, 22*(n-1)^2) \\ Derek Orr, Apr 10 2015
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 16 2011
STATUS
approved
Concentric 11-gonal numbers.
+10
8
0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
OFFSET
0,3
COMMENTS
Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012
FORMULA
a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 11, 23}, 50] (* Harvey P. Dale, May 20 2019 *)
PROG
(Magma) [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
(Haskell)
a195043 n = a195043_list !! n
a195043_list = scanl (+) 0 a175885_list
-- Reinhard Zumkeller, Jan 07 2012
(PARI) Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 27 2011
STATUS
approved
a(n) = (6*n)^2.
+10
7
0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
OFFSET
0,2
COMMENTS
Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.
FORMULA
From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)
MATHEMATICA
(6*Range[0, 40])^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 36, 144}, 40] (* Harvey P. Dale, Dec 25 2017 *)
Table[36 n^2, {n, 0, 45}] (* Omar E. Pol, Jun 07 2018 *)
PROG
(Magma) [(6*n)^2: n in [0..40]]; // Vincenzo Librandi, May 03 2011
(PARI) a(n)=36*n^2 \\ Charles R Greathouse IV, Jun 10 2016
CROSSREFS
Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).
KEYWORD
nonn,easy
STATUS
approved
Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.
+10
5
1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
OFFSET
1,2
COMMENTS
Every positive integer occurs exactly once.
FORMULA
T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014
EXAMPLE
Northwest corner:
1 4 9 16 25 36 49
2 8 18 32 50 72 98
3 12 27 48 75 108 147
5 20 45 80 125 180 245
6 24 54 96 150 216 294
MATHEMATICA
z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
TableForm[t] (* A249327 array *)
Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)
CROSSREFS
Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 26 2014
STATUS
approved
a(n) = 34*n^2.
+10
1
0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.
FORMULA
a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[34 n^2, {n, 0, 40}]
LinearRecurrence[{3, -3, 1}, {0, 34, 136}, 50] (* Harvey P. Dale, Jul 23 2018 *)
PROG
(PARI) a(n) = 34*n^2;
(PARI) concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
(Magma) [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
CROSSREFS
Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 13 2018
STATUS
approved
Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.
+10
0
0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
OFFSET
0,8
FORMULA
O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
EXAMPLE
The array begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 8, 12, 16, 20, 24, ...
0, 9, 18, 27, 36, 45, 54, ...
0, 16, 32, 48, 64, 80, 96, ...
0, 25, 50, 75, 100, 125, 150, ...
0, 36, 72, 108, 144, 180, 216, ...
...
MATHEMATICA
A[n_, k_]:=k n^2; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Jul 08 2023
STATUS
approved

Search completed in 0.010 seconds