[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a003449 -id:a003449
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.
+10
8
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
OFFSET
3,8
LINKS
EXAMPLE
Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1, 1;
1, 2, 3, 3;
1, 2, 6, 7, 4;
1, 3, 11, 24, 24, 12;
1, 3, 17, 51, 89, 74, 27;
1, 4, 26, 109, 265, 371, 259, 82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
T=DissectionsModDihedral(apply(i->y, [1..12]));
for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)
CROSSREFS
Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 24 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into n-4 polygons by nonintersecting diagonals up to rotation and reflection.
(Formerly M1673)
+10
6
1, 2, 6, 24, 89, 371, 1478, 6044, 24302, 98000, 392528, 1570490, 6264309, 24954223, 99253318, 394409402, 1565986466, 6214173156, 24647935156, 97732340680, 387428854374, 1535588541762, 6085702368796, 24116801236744, 95569050564444, 378718095630676
OFFSET
5,2
COMMENTS
In other words, the number of (n - 5)-dissections of an n-gon modulo the dihedral action.
Equivalently, the number of two-dimensional faces of the (n-3)-dimensional associahedron modulo the dihedral action.
The dissection will always be composed of either 1 pentagon and n-5 triangles or 2 quadrilaterals and n-6 triangles. - Andrew Howroyd, Nov 24 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
See Maple program.
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T32:=proc(n) local t1; global C;
if n mod 2 = 0 then
t1 := (n-3)^2*(n-4)*C(n-2)/(8*n*(2*n-5));
if n mod 5 = 0 then t1:=t1+(2/5)*C(n/5-1) fi;
if n mod 2 = 0 then t1:=t1+((3*(n-4)*(n-1))/(16*(n-3)))*C(n/2-1) fi;
else
t1 := (n-3)^2*(n-4)*C(n-2)/(8*n*(2*n-5));
if n mod 5 = 0 then t1:=t1+(2/5)*C(n/5-1) fi;
if n mod 2 = 1 then t1:=t1+((n^2-2*n-11)/(8*(n-4)))*C((n-3)/2) fi;
fi;
t1; end;
[seq(T32(n), n=5..40)];
MATHEMATICA
c = CatalanNumber;
T32[n_] := Module[{t1}, If[EvenQ[n], t1 = (n-3)^2*(n-4)*c[n-2]/(8*n*(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (2/5)*c[n/5-1]]; If[EvenQ[n], t1 = t1 + ((3*(n-4)*(n-1))/(16*(n-3)))*c[n/2-1]], t1 = (n-3)^2*(n-4)*c[n-2]/(8*n *(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (2/5) * c[n/5-1]]; If[OddQ[n], t1 = t1 + ((n^2 - 2*n - 11)/(8*(n-4)))*c[(n-3)/2]]]; t1];
Table[T32[n], {n, 5, 40}] (* Jean-François Alcover, Dec 11 2017, translated from Maple *)
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
{ my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=5, y^(i-3) + O(y^3)), [1..30]))); apply(p->polcoeff(p, 2), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
CROSSREFS
A diagonal of A295634.
KEYWORD
nonn
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017
STATUS
approved
Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation.
+10
6
1, 1, 4, 12, 43, 143, 504, 1768, 6310, 22610, 81752, 297160, 1086601, 3991995, 14732720, 54587280, 202997670, 757398510, 2834510744, 10637507400, 40023636310, 150946230006, 570534578704, 2160865067312, 8199711378716, 31170212479588, 118686578956272
OFFSET
4,3
COMMENTS
This is almost identical to A003444, but has a different offset and a more precise definition.
In other words, the number of almost-triangulations of an n-gon modulo the cyclic action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 25 2017
Also number of necklaces of 2 colors with 2n-4 beads and n black ones. - Wouter Meeussen, Aug 03 2002
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
FORMULA
a(n) = (1/(2n-4)) Sum_{d |(2n-4, n)} phi(d)*binomial((2n-4)/d, n/d) for n >= 4. - Wouter Meeussen, Aug 03 2002
MAPLE
C:=n->binomial(2*n, n)/(n+1);
T2:= proc(n) local t1; global C;
t1 := (n-3)*C(n-2)/(2*n);
if n mod 4 = 0 then t1:=t1+C(n/4-1)/2 fi;
if n mod 2 = 0 then t1:=t1+C(n/2-1)/4 fi;
t1; end;
[seq(T2(n), n=4..40)];
MATHEMATICA
c[n_] := Binomial[2*n, n]/(n+1);
T2[n_] := Module[{t1}, t1 = (n-3)*c[n-2]/(2*n); If[Mod[n, 4] == 0, t1 = t1 + c[n/4-1]/2]; If[Mod[n, 2] == 0, t1 = t1 + c[n/2-1]/4]; t1];
Table[T2[n], {n, 4, 40}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
a[n_] := Sum[EulerPhi[d]*Binomial[(2n-4)/d, n/d], {d, Divisors[GCD[2n-4, n] ]}]/(2n-4);
Array[a, 30, 4] (* Jean-François Alcover, Dec 02 2017, after Andrew Howroyd *)
PROG
(PARI)
a(n) = if(n>=4, sumdiv(gcd(2*n-4, n), d, eulerphi(d)*binomial((2*n-4)/d, n/d))/(2*n-4)) \\ Andrew Howroyd, Nov 25 2017
CROSSREFS
A diagonal of A295633.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 28 2012
EXTENSIONS
Name clarified by Andrew Howroyd, Nov 25 2017
STATUS
approved

Search completed in 0.005 seconds