[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002551 -id:a002551
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominators of coefficients of log(1+x)/sqrt(1+x).
(Formerly M5139 N2229)
+10
2
1, 1, 24, 12, 640, 1920, 107520, 1792, 2064384, 10321920, 43253760, 64880640, 5398069248, 4198498304, 503819796480, 62977474560, 16610786017280, 4271344975872, 649244436332544, 41618233098240, 27967452642017280
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables). [Annotated scanned copy]
MATHEMATICA
Denominator[CoefficientList[Series[Log[1 + x]/Sqrt[1 + x]/x, {x, 0, 40}], x]] (* Vincenzo Librandi, Mar 25 2014 *)
CROSSREFS
Cf. A002549.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Benoit Cloitre, Mar 29 2002
STATUS
approved
Numerators of coefficients for numerical differentiation.
(Formerly M4034 N1676)
+10
2
1, -5, 259, -3229, 117469, -7156487, 2430898831, -60997921, 141433003757, -25587296781661, 51270597630767, -6791120985104747, 3400039831130408821, -15317460638921852507, 25789165074168004597399, -1550286106708510672406629, 24823277118070193095631689
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23.
FORMULA
a(n) is the numerator of (-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n)!*2^(2n-3)), where Cn{1^2..(2n+1)^2} equals 1 when n=0, otherwise it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,...,n. - Ruperto Corso, Dec 15 2011
a(n) = numerator(A001824(n-1)*(-1)^(n-1)/(2^(2*n-3)*(2*n)!)). - Sean A. Irvine, Mar 29 2014
MAPLE
with(combinat):
a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n-1))*(-1)^(n-1)/(2^(2*n-3)*(2*n)!):
seq(numer(a(n)), n=1..20); # Ruperto Corso, Dec 15 2011
CROSSREFS
KEYWORD
sign,frac
EXTENSIONS
Corrected and extended by Ruperto Corso, Dec 15 2011
STATUS
approved
Coefficients for numerical differentiation.
(Formerly M5166 N2243)
+10
0
1, 24, 640, 7168, 294912, 2883584, 54525952, 167772160, 36507222016, 326417514496, 5772436045824, 50577534877696, 1759218604441600, 15199648742375424, 261208778387488768, 2233785415175766016, 101457092405402533888
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23, (see denominators of numbers named M(1,2k+1)).
FORMULA
a(n) = denom(A001818(n)*(-1)^(n-1)/(2^(2*n)*(2*n+1)!)). - Sean A. Irvine, Mar 29 2014
a(n) is the denominator of(-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n+1)!*2^(2n)), where Cn{1^2..(2n+1)^2} is equal to 1 when n=0, otherwise, it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,..,n. - Sean A. Irvine, after Ruperto Corso, Mar 29 2014
MAPLE
with(combinat): a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n))*(-1)^(n-1)/(2^(2*n)*(2*n+1)!):seq(a(n), n=0..20); # Sean A. Irvine, after Ruperto Corso
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Mar 29 2014
STATUS
approved

Search completed in 0.017 seconds