# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a002553 Showing 1-1 of 1 %I A002553 M5166 N2243 #31 Jul 18 2015 13:17:00 %S A002553 1,24,640,7168,294912,2883584,54525952,167772160,36507222016, %T A002553 326417514496,5772436045824,50577534877696,1759218604441600, %U A002553 15199648742375424,261208778387488768,2233785415175766016,101457092405402533888 %N A002553 Coefficients for numerical differentiation. %D A002553 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002553 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002553 W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables). %H A002553 W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy] %H A002553 T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23, (see denominators of numbers named M(1,2k+1)). %F A002553 a(n) = denom(A001818(n)*(-1)^(n-1)/(2^(2*n)*(2*n+1)!)). - _Sean A. Irvine_, Mar 29 2014 %F A002553 a(n) is the denominator of(-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n+1)!*2^(2n)), where Cn{1^2..(2n+1)^2} is equal to 1 when n=0, otherwise, it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,..,n. - _Sean A. Irvine_, after _Ruperto Corso_, Mar 29 2014 %p A002553 with(combinat): a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n))*(-1)^(n-1)/(2^(2*n)*(2*n+1)!):seq(a(n), n=0..20); # _Sean A. Irvine_, after _Ruperto Corso_ %Y A002553 Cf. A001818, A002555. %K A002553 nonn %O A002553 0,2 %A A002553 _N. J. A. Sloane_ %E A002553 More terms from _Sean A. Irvine_, Mar 29 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE