OFFSET
0,4
COMMENTS
All blocks of 60 successive terms contain 20 even and 40 odd numbers. - Reinhard Zumkeller, Apr 09 2005
These are the analogs of the Fibonacci numbers in carryless arithmetic mod 10.
REFERENCES
G. Marsaglia, The mathematics of random number generators, pp. 73-90 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version.
H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
Gregory P. Dresden, Three transcendental numbers from the last non-zero digits of n^n, F_n and n!, Math. Mag., pp. 96-105, vol. 81, 2008.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1).
FORMULA
Periodic with period 60 = A001175(10).
From Reinhard Zumkeller, Apr 09 2005: (Start)
a(n) = (a(n-1) + a(n-2)) mod 10 for n > 1, a(0) = 0, a(1) = 1.
MAPLE
with(combinat, fibonacci); A003893 := proc(n) fibonacci(n) mod 10; end;
MATHEMATICA
Table[Mod[Fibonacci[n], 10], {n, 0, 99}] (* Alonso del Arte, Jul 29 2013 *)
Table[IntegerDigits[Fibonacci[n]][[-1]], {n, 0, 99}] (* Alonso del Arte, Jul 29 2013 *)
NumberDigit[Fibonacci[Range[0, 120]], 0] (* Requires Mathematica version 12 or later *) (* Harvey P. Dale, Jul 05 2021 *)
PROG
(Haskell)
a003893 n = a003893_list !! n
a003893_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 10)
(tail a003893_list) a003893_list
-- Reinhard Zumkeller, Jul 01 2013
(PARI) a(n)=fibonacci(n)%10 \\ Charles R Greathouse IV, Feb 03 2014
(Magma) [Fibonacci(n) mod 10: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
(Python)
A003893_list, a, b, = [], 0, 1
for _ in range(10**3):
A003893_list.append(a)
a, b = b, (a+b) % 10 # Chai Wah Wu, Nov 26 2015
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, elipper(AT)uoft02.utoledo.edu
EXTENSIONS
More terms from Ray Chandler, Nov 15 2003
STATUS
approved