Displaying 1-9 of 9 results found.
page
1
Number of times 1 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
11
0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 13, 13, 13, 13, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24
FORMULA
a(n) = #{k: A008963(k) = 1 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 1, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==1);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 9 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5
FORMULA
a(n) = #{k: A008963(k) = 9 and 0<=k<=n};
MATHEMATICA
Table[If[First[IntegerDigits[Fibonacci[n]]]==9, 1, 0], {n, 0, 110}]// Accumulate (* Harvey P. Dale, Nov 27 2018 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==9);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 18 2023
Numbers n such that 5 is the leading digit of the n-th Fibonacci number in decimal representation.
+10
10
5, 10, 29, 34, 53, 58, 77, 96, 101, 120, 125, 139, 144, 163, 168, 187, 192, 206, 211, 230, 235, 254, 273, 278, 297, 302, 321, 340, 345, 364, 369, 388, 407, 412, 431, 436, 455, 474, 479, 498, 503, 522, 541, 546, 565, 570, 584, 589, 608, 613, 632, 637, 651, 656
FORMULA
a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(6) - log(5)) = 12.629253.... - Charles R Greathouse IV, Oct 07 2016
EXAMPLE
A000030(5358359254990966640871840) = 5.
MAPLE
ld:= x -> floor(x/10^ilog10(x)):
select(n -> ld(combinat:-fibonacci(n))=5, [$1..1000]); # Robert Israel, Oct 26 2020
MATHEMATICA
Select[Range[700], First[IntegerDigits[Fibonacci[#]]]==5&] (* Harvey P. Dale, Jul 31 2018 *)
CROSSREFS
Cf. A000030, A000045, A072703, A105501, A105502, A105503, A105504, A105506, A105507, A105508, A105509.
Number of times 2 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16
FORMULA
a(n) = #{k: A008963(k) = 2 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 2, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==2);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 3 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
FORMULA
a(n) = #{k: A008963(k) = 3 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 3, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==3);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 4 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
FORMULA
a(n) = #{k: A008963(k) = 4 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 4, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==4);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 6 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
FORMULA
a(n) = #{k: A008963(k) = 6 and 0<=k<=n};
MATHEMATICA
Prepend[Accumulate[If[First[IntegerDigits[#]]==6, 1, 0]&/@Fibonacci[ Range[ 110]]], 0] (* Harvey P. Dale, Feb 18 2011 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==6);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 7 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
FORMULA
a(n) = #{k: A008963(k) = 7 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]]==7, 1, 0], {n, 0, 120}]] (* Harvey P. Dale, Apr 29 2018 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==7);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Number of times 8 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.
+10
10
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7
FORMULA
a(n) = #{k: A008963(k) = 8 and 0<=k<=n};
MATHEMATICA
Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 8, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
PROG
(PARI)
(leadingdigit(n, b=10) = n \ 10^logint(n, b));
(isok(n) = leadingdigit(fibonacci(n))==8);
(lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023
Search completed in 0.010 seconds
|