[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a004602 -id:a004602
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of Pi in base 6.
+10
23
3, 0, 5, 0, 3, 3, 0, 0, 5, 1, 4, 1, 5, 1, 2, 4, 1, 0, 5, 2, 3, 4, 4, 1, 4, 0, 5, 3, 1, 2, 5, 3, 2, 1, 1, 0, 2, 3, 0, 1, 2, 1, 4, 4, 4, 2, 0, 0, 4, 1, 1, 5, 2, 5, 2, 5, 5, 3, 3, 1, 4, 2, 0, 3, 3, 3, 1, 3, 1, 1, 3, 5, 5, 3, 5, 1, 3, 1, 2, 3, 3, 4, 5, 5, 3, 3, 4, 1, 0, 0, 1, 5, 1, 5, 4, 3, 4, 4, 4, 0, 1, 2, 3, 4, 3
OFFSET
1,1
LINKS
EXAMPLE
3.05033005141512410523441405312532110230...
MATHEMATICA
RealDigits[Pi, 6, 105][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 6], {n, 1, 105}] (* Joan Ludevid , Aug 17 2022; easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), this sequence (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
KEYWORD
nonn,base,cons,easy
STATUS
approved
Expansion of Pi in base 5.
+10
22
3, 0, 3, 2, 3, 2, 2, 1, 4, 3, 0, 3, 3, 4, 3, 2, 4, 1, 1, 2, 4, 1, 2, 2, 4, 0, 4, 1, 4, 0, 2, 3, 1, 4, 2, 1, 1, 1, 4, 3, 0, 2, 0, 3, 1, 0, 0, 2, 2, 0, 0, 3, 4, 4, 4, 1, 3, 2, 2, 1, 1, 0, 1, 0, 4, 0, 3, 3, 2, 1, 3, 4, 4, 0, 0, 4, 3, 2, 4, 4, 4, 0, 1, 4, 4, 1, 0, 4, 2, 3, 3, 4, 1, 3, 3, 0, 1, 1, 3, 2
OFFSET
1,1
LINKS
Wadim Zudilin, A BBP-style computation for π in base 5, arXiv:2409.10097 [math.NT], 2024.
EXAMPLE
3.03232214303343241124122404140231421114...
MATHEMATICA
RealDigits[Pi, 5, 100][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 5], {n, 1, 100}] (* Joan Ludevid, Aug 17 2022; easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
KEYWORD
nonn,base,cons,easy
STATUS
approved
Expansion of Pi in base 7.
+10
22
3, 0, 6, 6, 3, 6, 5, 1, 4, 3, 2, 0, 3, 6, 1, 3, 4, 1, 1, 0, 2, 6, 3, 4, 0, 2, 2, 4, 4, 6, 5, 2, 2, 2, 6, 6, 4, 3, 5, 2, 0, 6, 5, 0, 2, 4, 0, 1, 5, 5, 4, 4, 3, 2, 1, 5, 4, 2, 6, 4, 3, 1, 0, 2, 5, 1, 6, 1, 1, 5, 4, 5, 6, 5, 2, 2, 0, 0, 0, 2, 6, 2, 2, 4, 3, 6, 1, 0, 3, 3, 0, 1, 4, 4, 3, 2, 3, 3, 6, 3, 1, 0, 1, 1, 3
OFFSET
1,1
LINKS
EXAMPLE
3.06636514320361341102634022446522266435...
MATHEMATICA
RealDigits[Pi, 7, 105][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 7], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=5 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), this sequence (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
KEYWORD
nonn,base,cons,easy
STATUS
approved
Expansion of Pi in base 8.
(Formerly M2208)
+10
22
3, 1, 1, 0, 3, 7, 5, 5, 2, 4, 2, 1, 0, 2, 6, 4, 3, 0, 2, 1, 5, 1, 4, 2, 3, 0, 6, 3, 0, 5, 0, 5, 6, 0, 0, 6, 7, 0, 1, 6, 3, 2, 1, 1, 2, 2, 0, 1, 1, 1, 6, 0, 2, 1, 0, 5, 1, 4, 7, 6, 3, 0, 7, 2, 0, 0, 2, 0, 2, 7, 3, 7, 2, 4, 6, 1, 6, 6, 1, 1, 6, 3, 3, 1, 0, 4, 5, 0, 5, 1, 2, 0, 2, 0, 7, 4, 6, 1, 6, 1, 5, 0, 0, 2, 3
OFFSET
1,1
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 614.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = 4*A004601(3n) + 2*A004601(3n+1) + 1*A004601(3n+2). - Jason Kimberley, Nov 06 2012
EXAMPLE
3.1103755242102643021514230630505600670...
MAPLE
convert(evalf(Pi), octal, 120); # Alois P. Heinz, Dec 16 2018
MATHEMATICA
RealDigits[ N[ Pi, 105], 8] [[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 8], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), this sequence (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
KEYWORD
nonn,base,cons,easy
EXTENSIONS
More terms from Michel ten Voorde, Apr 14 2001
STATUS
approved
Expansion of Pi in base 13.
+10
21
3, 1, 10, 12, 1, 0, 4, 9, 0, 5, 2, 10, 2, 12, 7, 7, 3, 6, 9, 12, 0, 11, 11, 8, 9, 12, 12, 9, 8, 8, 3, 2, 7, 8, 2, 9, 8, 3, 5, 8, 11, 3, 7, 0, 1, 6, 0, 3, 0, 6, 1, 3, 3, 12, 10, 5, 10, 12, 11, 10, 5, 7, 6, 1, 4, 11, 6, 5, 11, 4, 1, 0, 0, 2, 0, 12, 2, 2, 11, 4, 12, 7, 1, 4, 5, 7, 10, 9, 5, 5, 10, 5
OFFSET
1,1
EXAMPLE
3.1ac1049052a2c77369c0aa89cc988327829835...
MATHEMATICA
RealDigits[Pi, 13, 111][[1]] (* slightly modified by Robert G. Wilson v, Dec 13 2017 *)
Table[ResourceFunction["NthDigit"][Pi, n, 13], {n, 1, 111}] (* Joan Ludevid, Oct 11 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), this sequence (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.
KEYWORD
easy,nonn,base,cons
AUTHOR
Benoit Cloitre, Mar 09 2002
STATUS
approved
Expansion of Pi in base 14.
+10
21
3, 1, 13, 10, 7, 5, 12, 13, 10, 8, 1, 3, 7, 5, 4, 2, 7, 10, 4, 0, 10, 11, 12, 11, 1, 11, 13, 4, 7, 5, 4, 9, 12, 8, 9, 11, 12, 11, 6, 8, 6, 1, 13, 3, 3, 2, 7, 12, 7, 4, 0, 12, 10, 11, 8, 0, 9, 10, 5, 2, 13, 0, 13, 13, 5, 1, 7, 1, 8, 7, 4, 5, 0, 4, 10, 5, 4, 8, 1, 12, 12, 9, 1, 5, 4, 9, 0, 11, 11, 5
OFFSET
1,1
EXAMPLE
3.1da75cda81375427a40abcb1bd47549c89bcb6...
MATHEMATICA
RealDigits[Pi, 14, 115][[1]]
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), this sequence (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
KEYWORD
easy,nonn,base,cons
AUTHOR
Benoit Cloitre, Mar 09 2002
STATUS
approved
Expansion of Pi in golden base (i.e., in irrational base phi = (1+sqrt(5))/2) = A001622.
+10
7
1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0
OFFSET
3
COMMENTS
George Bergman wrote his paper when he was 12. Mike Wallace interviewed him when Bergman was 14. - Robert G. Wilson v, Mar 14 2014
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 3..1002 (offset adapted by Georg Fischer, Jan 24 2019)
George Bergman, A number system with an irrational base, Math. Mag. 31 (1957), pp. 98-110.
Chittaranjan Pardeshi, 100000 digits of Pi in golden base
Mike Wallace, Mike Wallace Asks George Bergman: What Makes a Genius Tick?, Math. Mag. 31 (1958), p. 282.
FORMULA
Pi = 4/phi + Sum_{n>=0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
EXAMPLE
Pi = phi^2 + 1/phi^2 + 1/phi^5 + 1/phi^7 + ... thus Pi = 100.0100101010010001010101000001010... in golden base.
MATHEMATICA
RealDigits[Pi, GoldenRatio, 111][[1]] (* Robert G. Wilson v, Feb 26 2010 *)
PROG
(PARI) f=(1+sqrt(5))/2; z=Pi; b=0; m=100; for(n=1, m, c=ceil(log(z)/log(1/f)); z=z-1/f^c; b=b+1./10^c; if(n==m, print1(b, ", ")))
(PARI)
alist(len) = {
my(phi=quadgen(5), n=-1, pi=4/phi, gap=phi^3, hi=pi+gap, t=0, w=phi^3);
vector(len, i,
w = w/phi;
while(t+w < hi && t+w > pi,
n = n + 1;
pi += phi^(-12*n) * (
8 * phi^-3 / (12*n+3)
+ 4 * phi^-5 / (12*n+5)
- 4 * phi^-7 / (12*n+7)
- 8 * phi^-9 / (12*n+9)
- 4 * phi^-11 / (12*n+11)
+ 4 * phi^-13 / (12*n+13));
gap /= phi^12;
hi = pi + gap);
if( t+w <= pi, t += w; 1, 0))};
alist(1000) \\ Chittaranjan Pardeshi, May 18 2022
KEYWORD
cons,base,nonn
AUTHOR
Benoit Cloitre, Feb 18 2005
EXTENSIONS
Offset corrected by Lee A. Newberg, Apr 13 2018
STATUS
approved
Pi in the base sqrt(2).
+10
4
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
4
COMMENTS
George Bergman wrote his paper when he was 12. Mike Wallace interviewed him when Bergman was 14.
LINKS
George Bergman, A number system with an irrational base, Math. Mag. 31 (1957), pp. 98-110.
Mike Wallace, Mike Wallace Asks George Bergman: What Makes a Genius Tick?, Math. Mag. 31 (1958), p. 282.
EXAMPLE
= 1000.00010001000000000000010010000000000100001000010000000010000001...
MATHEMATICA
RealDigits[Pi, Sqrt[2], 105][[1]]
CROSSREFS
Cf. A050948 (Pi in base e), A102243 (Pi in the golden base), A239199 (Pi in base sqrt(3)).
KEYWORD
nonn,base
AUTHOR
T. D. Noe, Mar 11 2014
STATUS
approved
In the ternary Pi race between digits zero and one, where the race leader changes.
+10
4
1, 3, 8, 1481, 1505, 1509, 1513, 1541, 1567, 1596, 1730, 1734, 1739, 1741, 1769, 1772, 1783, 1790, 66446, 66489, 66493, 66496, 68547, 68554, 68871, 69116, 69146, 69190, 69194, 69268, 69270, 69379, 69381, 69389, 241170
OFFSET
1,2
LINKS
Hans Havermann and Robert G. Wilson v, Table of n, a(n) for n = 1..395
EXAMPLE
Ternary Pi is 10.01021101222201021100211...
With no digits of ternary Pi, there are an equal number of zeros and ones. 1 is in the sequence because with the initial digit of ternary Pi, 1 has now taken the count lead over 0 (1-0). 3 is the next term because with 3 initial digits of ternary Pi, 0 has now taken the count lead over 1 (2-1). 8 is the next term because with 8 initial digits, 1 regains the count lead over 0 (4-3).
MATHEMATICA
pib = RealDigits[Pi, 3, 5000000][[1]]; flag = 1; z = o = t = 0; k = 1; lst = {}; While[k < 5000001, Switch[ pib[[k]], 0, z++, 1, o++, 2, t++]; If[(z > o && flag != 1) || (z < o && flag != -1), AppendTo[lst, k]; flag = -flag]; k++]; lst
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved
In the ternary Pi race between digits zero and two, where the race leader changes.
+10
4
2, 14, 17, 33, 156, 189, 4853, 5494, 5541, 5548, 5663, 5665, 5668, 5673, 5686, 5689, 5702, 5704, 5719, 5732, 5739, 5831, 5834, 5839, 5845, 5847, 5905, 5913, 5925, 5928, 5950, 5978, 5980, 5986, 6000
OFFSET
1,1
LINKS
EXAMPLE
Ternary Pi is 10.01021101222201021100211...
With no digits of ternary Pi, there are an equal number of zeros and twos. 2 is in the sequence because with the initial 2 digits of ternary Pi, 0 has now taken the count lead over 2 (1-0). 14 is the next term because with 14 initial digits of ternary Pi, 2 has now taken the count lead over 0 (5-4). 17 is the next term because with 17 initial digits, 0 regains the count lead over 2 (6-5).
MATHEMATICA
pib = RealDigits[Pi, 3, 5000000][[1]]; flag = -1; z = o = t = 0; k = 1; lst = {}; While[k < 5000001, Switch[ pib[[k]], 0, z++, 1, o++, 2, t++]; If[(z > t && flag != 1) || (z < t && flag != -1), AppendTo[lst, k]; flag = -flag]; k++]; lst
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved

Search completed in 0.019 seconds