Displaying 11-20 of 29 results found.
Expansion of Pi in base 6.
+10
23
3, 0, 5, 0, 3, 3, 0, 0, 5, 1, 4, 1, 5, 1, 2, 4, 1, 0, 5, 2, 3, 4, 4, 1, 4, 0, 5, 3, 1, 2, 5, 3, 2, 1, 1, 0, 2, 3, 0, 1, 2, 1, 4, 4, 4, 2, 0, 0, 4, 1, 1, 5, 2, 5, 2, 5, 5, 3, 3, 1, 4, 2, 0, 3, 3, 3, 1, 3, 1, 1, 3, 5, 5, 3, 5, 1, 3, 1, 2, 3, 3, 4, 5, 5, 3, 3, 4, 1, 0, 0, 1, 5, 1, 5, 4, 3, 4, 4, 4, 0, 1, 2, 3, 4, 3
EXAMPLE
3.05033005141512410523441405312532110230...
MATHEMATICA
RealDigits[Pi, 6, 105][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 6], {n, 1, 105}] (* Joan Ludevid , Aug 17 2022; easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), this sequence (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in base 5.
+10
22
3, 0, 3, 2, 3, 2, 2, 1, 4, 3, 0, 3, 3, 4, 3, 2, 4, 1, 1, 2, 4, 1, 2, 2, 4, 0, 4, 1, 4, 0, 2, 3, 1, 4, 2, 1, 1, 1, 4, 3, 0, 2, 0, 3, 1, 0, 0, 2, 2, 0, 0, 3, 4, 4, 4, 1, 3, 2, 2, 1, 1, 0, 1, 0, 4, 0, 3, 3, 2, 1, 3, 4, 4, 0, 0, 4, 3, 2, 4, 4, 4, 0, 1, 4, 4, 1, 0, 4, 2, 3, 3, 4, 1, 3, 3, 0, 1, 1, 3, 2
EXAMPLE
3.03232214303343241124122404140231421114...
MATHEMATICA
RealDigits[Pi, 5, 100][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 5], {n, 1, 100}] (* Joan Ludevid, Aug 17 2022; easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in base 7.
+10
22
3, 0, 6, 6, 3, 6, 5, 1, 4, 3, 2, 0, 3, 6, 1, 3, 4, 1, 1, 0, 2, 6, 3, 4, 0, 2, 2, 4, 4, 6, 5, 2, 2, 2, 6, 6, 4, 3, 5, 2, 0, 6, 5, 0, 2, 4, 0, 1, 5, 5, 4, 4, 3, 2, 1, 5, 4, 2, 6, 4, 3, 1, 0, 2, 5, 1, 6, 1, 1, 5, 4, 5, 6, 5, 2, 2, 0, 0, 0, 2, 6, 2, 2, 4, 3, 6, 1, 0, 3, 3, 0, 1, 4, 4, 3, 2, 3, 3, 6, 3, 1, 0, 1, 1, 3
EXAMPLE
3.06636514320361341102634022446522266435...
MATHEMATICA
RealDigits[Pi, 7, 105][[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 7], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=5 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), this sequence (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in base 8.
(Formerly M2208)
+10
22
3, 1, 1, 0, 3, 7, 5, 5, 2, 4, 2, 1, 0, 2, 6, 4, 3, 0, 2, 1, 5, 1, 4, 2, 3, 0, 6, 3, 0, 5, 0, 5, 6, 0, 0, 6, 7, 0, 1, 6, 3, 2, 1, 1, 2, 2, 0, 1, 1, 1, 6, 0, 2, 1, 0, 5, 1, 4, 7, 6, 3, 0, 7, 2, 0, 0, 2, 0, 2, 7, 3, 7, 2, 4, 6, 1, 6, 6, 1, 1, 6, 3, 3, 1, 0, 4, 5, 0, 5, 1, 2, 0, 2, 0, 7, 4, 6, 1, 6, 1, 5, 0, 0, 2, 3
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 614.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
3.1103755242102643021514230630505600670...
MATHEMATICA
RealDigits[ N[ Pi, 105], 8] [[1]]
Table[ResourceFunction["NthDigit"][Pi, n, 8], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), this sequence (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in base 13.
+10
21
3, 1, 10, 12, 1, 0, 4, 9, 0, 5, 2, 10, 2, 12, 7, 7, 3, 6, 9, 12, 0, 11, 11, 8, 9, 12, 12, 9, 8, 8, 3, 2, 7, 8, 2, 9, 8, 3, 5, 8, 11, 3, 7, 0, 1, 6, 0, 3, 0, 6, 1, 3, 3, 12, 10, 5, 10, 12, 11, 10, 5, 7, 6, 1, 4, 11, 6, 5, 11, 4, 1, 0, 0, 2, 0, 12, 2, 2, 11, 4, 12, 7, 1, 4, 5, 7, 10, 9, 5, 5, 10, 5
EXAMPLE
3.1ac1049052a2c77369c0aa89cc988327829835...
MATHEMATICA
Table[ResourceFunction["NthDigit"][Pi, n, 13], {n, 1, 111}] (* Joan Ludevid, Oct 11 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), this sequence (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in base 14.
+10
21
3, 1, 13, 10, 7, 5, 12, 13, 10, 8, 1, 3, 7, 5, 4, 2, 7, 10, 4, 0, 10, 11, 12, 11, 1, 11, 13, 4, 7, 5, 4, 9, 12, 8, 9, 11, 12, 11, 6, 8, 6, 1, 13, 3, 3, 2, 7, 12, 7, 4, 0, 12, 10, 11, 8, 0, 9, 10, 5, 2, 13, 0, 13, 13, 5, 1, 7, 1, 8, 7, 4, 5, 0, 4, 10, 5, 4, 8, 1, 12, 12, 9, 1, 5, 4, 9, 0, 11, 11, 5
EXAMPLE
3.1da75cda81375427a40abcb1bd47549c89bcb6...
MATHEMATICA
RealDigits[Pi, 14, 115][[1]]
CROSSREFS
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), this sequence (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Expansion of Pi in golden base (i.e., in irrational base phi = (1+sqrt(5))/2) = A001622.
+10
7
1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0
COMMENTS
George Bergman wrote his paper when he was 12. Mike Wallace interviewed him when Bergman was 14. - Robert G. Wilson v, Mar 14 2014
FORMULA
Pi = 4/phi + Sum_{n>=0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
EXAMPLE
Pi = phi^2 + 1/phi^2 + 1/phi^5 + 1/phi^7 + ... thus Pi = 100.0100101010010001010101000001010... in golden base.
PROG
(PARI) f=(1+sqrt(5))/2; z=Pi; b=0; m=100; for(n=1, m, c=ceil(log(z)/log(1/f)); z=z-1/f^c; b=b+1./10^c; if(n==m, print1(b, ", ")))
(PARI)
alist(len) = {
my(phi=quadgen(5), n=-1, pi=4/phi, gap=phi^3, hi=pi+gap, t=0, w=phi^3);
vector(len, i,
w = w/phi;
while(t+w < hi && t+w > pi,
n = n + 1;
pi += phi^(-12*n) * (
8 * phi^-3 / (12*n+3)
+ 4 * phi^-5 / (12*n+5)
- 4 * phi^-7 / (12*n+7)
- 8 * phi^-9 / (12*n+9)
- 4 * phi^-11 / (12*n+11)
+ 4 * phi^-13 / (12*n+13));
gap /= phi^12;
hi = pi + gap);
if( t+w <= pi, t += w; 1, 0))};
CROSSREFS
Cf. A000796, A001622, A004601, A004602, A004603, A004604, A004605, A004606, A004608, A006941, A062964, A068436, A068437, A068438, A068439, A068440, A238897.
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
COMMENTS
George Bergman wrote his paper when he was 12. Mike Wallace interviewed him when Bergman was 14.
EXAMPLE
= 1000.00010001000000000000010010000000000100001000010000000010000001...
MATHEMATICA
RealDigits[Pi, Sqrt[2], 105][[1]]
CROSSREFS
Cf. A000796, A004601, A004602, A004603, A004604, A004605, A004606, A004608, A006941, A062964, A068436, A068437, A068438, A068439, A068440.
In the ternary Pi race between digits zero and one, where the race leader changes.
+10
4
1, 3, 8, 1481, 1505, 1509, 1513, 1541, 1567, 1596, 1730, 1734, 1739, 1741, 1769, 1772, 1783, 1790, 66446, 66489, 66493, 66496, 68547, 68554, 68871, 69116, 69146, 69190, 69194, 69268, 69270, 69379, 69381, 69389, 241170
EXAMPLE
Ternary Pi is 10.01021101222201021100211...
With no digits of ternary Pi, there are an equal number of zeros and ones. 1 is in the sequence because with the initial digit of ternary Pi, 1 has now taken the count lead over 0 (1-0). 3 is the next term because with 3 initial digits of ternary Pi, 0 has now taken the count lead over 1 (2-1). 8 is the next term because with 8 initial digits, 1 regains the count lead over 0 (4-3).
MATHEMATICA
pib = RealDigits[Pi, 3, 5000000][[1]]; flag = 1; z = o = t = 0; k = 1; lst = {}; While[k < 5000001, Switch[ pib[[k]], 0, z++, 1, o++, 2, t++]; If[(z > o && flag != 1) || (z < o && flag != -1), AppendTo[lst, k]; flag = -flag]; k++]; lst
In the ternary Pi race between digits zero and two, where the race leader changes.
+10
4
2, 14, 17, 33, 156, 189, 4853, 5494, 5541, 5548, 5663, 5665, 5668, 5673, 5686, 5689, 5702, 5704, 5719, 5732, 5739, 5831, 5834, 5839, 5845, 5847, 5905, 5913, 5925, 5928, 5950, 5978, 5980, 5986, 6000
EXAMPLE
Ternary Pi is 10.01021101222201021100211...
With no digits of ternary Pi, there are an equal number of zeros and twos. 2 is in the sequence because with the initial 2 digits of ternary Pi, 0 has now taken the count lead over 2 (1-0). 14 is the next term because with 14 initial digits of ternary Pi, 2 has now taken the count lead over 0 (5-4). 17 is the next term because with 17 initial digits, 0 regains the count lead over 2 (6-5).
MATHEMATICA
pib = RealDigits[Pi, 3, 5000000][[1]]; flag = -1; z = o = t = 0; k = 1; lst = {}; While[k < 5000001, Switch[ pib[[k]], 0, z++, 1, o++, 2, t++]; If[(z > t && flag != 1) || (z < t && flag != -1), AppendTo[lst, k]; flag = -flag]; k++]; lst
Search completed in 0.019 seconds
|