OFFSET
0,1
COMMENTS
The current name does not define a(n) without ambiguity. It is meant that for each n, a(n) is the largest integer such that the remainder of Pi - (partial sum up to n) remains positive. This leads to the FORMULA given below. - M. F. Hasler, Mar 20 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = floor(n!*Pi) - n*floor((n-1)!*Pi) for all n > 0. - M. F. Hasler, Mar 20 2017
EXAMPLE
Pi = 3/0! + 0/1! + 0/2! + 0/3! + 3/4! + 1/5! + ...
MATHEMATICA
p = N[Pi, 1000]; Do[k = Floor[p*n! ]; p = p - k/n!; Print[k], {n, 0, 75} ]
PROG
(PARI) x=Pi; vector(floor((y->y/log(y))(default(realprecision))), n, t=(n-1)!; k=floor(x*t); x-=k/t; k) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) C=1/Pi; x=0; vector(primepi(default(realprecision)), n, -x*n--+x=n!\C) \\ M. F. Hasler, Mar 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved