[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A342671 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.
(history; published version)
#27 by Michael De Vlieger at Sat Jul 23 10:12:22 EDT 2022
STATUS

editing

approved

#26 by Antti Karttunen at Sat Jul 23 10:02:55 EDT 2022
CROSSREFS

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).

#25 by Antti Karttunen at Fri Jul 22 11:38:05 EDT 2022
CROSSREFS
#24 by Antti Karttunen at Fri Jul 22 11:24:39 EDT 2022
CROSSREFS

Cf. also A336850, A355932.

#23 by Antti Karttunen at Thu Jul 21 16:28:25 EDT 2022
CROSSREFS

Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

#22 by Antti Karttunen at Thu Jul 21 15:30:44 EDT 2022
#21 by Antti Karttunen at Thu Jul 21 15:30:06 EDT 2022
CROSSREFS
#20 by Antti Karttunen at Thu Jul 21 13:36:00 EDT 2022
CROSSREFS
#19 by Antti Karttunen at Thu Jul 21 13:23:48 EDT 2022
FORMULA

a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).

CROSSREFS

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A350071 [= a(n^2)], A355828 (Dirichlet inverse).

#18 by Antti Karttunen at Thu Jul 21 13:21:59 EDT 2022
FORMULA

a(n) = A161942(n) / A348992(n).

CROSSREFS

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A350071 [= a(n^2)], A355828 (Dirichlet inverse).