proposed
approved
proposed
approved
editing
proposed
Block[{c}, c[n_] := 1 - Ceiling[n] + Floor[n]; Array[Sum[Sum[Sign[c[i*(# - i - j)/j] + c[j*(# - i - j)/i] + c[i*j/(# - i - j)]], {i, j, Floor[(# - j)/2]}], {j, Floor[#/3]} ] &, 67]] (* Michael De Vlieger, Oct 21 2021 *)
proposed
editing
editing
proposed
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign( c(i*(n-i-j)/j) + c(j*(n-i-j)/i) + c(i*j/(n-i-j)) ), where c(n) = 1 - ceiling(n) + floor(n).
allocated for Wesley Ivan HurtNumber of partitions of n into 3 parts where at least one of the parts divides the product of the other two.
0, 0, 1, 1, 2, 3, 4, 5, 7, 7, 10, 10, 14, 14, 17, 17, 22, 20, 28, 25, 29, 30, 38, 32, 43, 40, 45, 43, 57, 45, 62, 56, 62, 63, 70, 61, 84, 74, 81, 74, 98, 78, 108, 92, 95, 102, 120, 95, 127, 109, 123, 116, 149, 118, 142, 129, 145, 147, 173, 126, 182, 163, 164, 164, 184, 158, 211
1,5
<a href="/index/Par#part">Index entries for sequences related to partitions</a>
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign( c(i*(n-i-j)/j) + c(j*(n-i-j)/i) + c(i*j/(n-i-j)) ), where c(n) = 1-ceiling(n)+floor(n).
a(9) = 7; All of the partitions of 9 (into 3 such parts) satisfy these conditions. They are (1,1,7), (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4) and (3,3,3).
a(10) = 7; The partitions of 10 into 3 such parts are (1,1,8), (1,2,7), (1,3,6), (1,4,5), (2,2,6), (2,4,4) and (3,3,4).
allocated
nonn
Wesley Ivan Hurt, Oct 21 2021
approved
editing
allocated for Wesley Ivan Hurt
recycled
allocated
editing
approved
Primes followed by gap 400.
47203303159
1,1
recycle
nonn,changed
recycled
Zak Seidov, Oct 21 2021
proposed
editing
editing
proposed