[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A322185 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = sigma(2*n) * binomial(2*n,n)/2, for n >= 1.
(history; published version)
#10 by Paul D. Hanna at Fri Dec 07 18:04:44 EST 2018
STATUS

editing

approved

#9 by Paul D. Hanna at Fri Dec 07 18:04:41 EST 2018
COMMENTS

(1) log( Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 ) = Sum_{n>=1} sigma(2*n) * x^n/n (see formula of _Joerg Arndt_ in A182818).

(2) log( C(x) ) = Sum_{n>=1} binomial(2*n,n)/2 * x^n/n, where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).

STATUS

approved

editing

#8 by Paul D. Hanna at Fri Dec 07 18:00:58 EST 2018
STATUS

editing

approved

#7 by Paul D. Hanna at Fri Dec 07 18:00:55 EST 2018
EXAMPLE

L.g.f: L(x) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + sigma(2*n) * binomial(2*n,n)/2 * x^n/n + ...

STATUS

approved

editing

#6 by Paul D. Hanna at Fri Dec 07 17:54:16 EST 2018
STATUS

editing

approved

#5 by Paul D. Hanna at Fri Dec 07 17:54:13 EST 2018
LINKS

Paul D. Hanna, <a href="/A322185/b322185.txt">Table of n, a(n) for n = 1..512</a>

STATUS

approved

editing

#4 by Paul D. Hanna at Fri Dec 07 17:48:31 EST 2018
STATUS

editing

approved

#3 by Paul D. Hanna at Fri Dec 07 17:48:28 EST 2018
NAME

allocated for Paul D. Hanna

a(n) = sigma(2*n) * binomial(2*n,n)/2, for n >= 1.

DATA

3, 21, 120, 525, 2268, 12936, 41184, 199485, 948090, 3879876, 12697776, 81124680, 218412600, 1123264800, 5584230720, 18934032285, 63007367940, 412918656150, 1060357914000, 6203093796900, 25836377973120, 88372156476240, 296403506193600, 1999351428352200, 5878093199355468, 24300008114457096, 116816365538886720, 458921436045626400, 1353026992479346800

OFFSET

1,1

COMMENTS

Related logarithmic series:

(1) log( Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 ) = Sum_{n>=1} sigma(2*n) * x^n/n.

(2) log( C(x) ) = Sum_{n>=1} binomial(2*n,n)/2 * x^n/n, where C(x) = 1 + x*C(x)^2 is the Catalan function.

FORMULA

a(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ), for n >= 1.

EXAMPLE

L.g.f: L(x) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ...

RELATED SERIES.

exp(L(x)) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ... + A322186(n)*x^n + ...

The table of coefficients of x^n*y^k/(n+k) in

log( Product_{n>=1} 1/(1 - (x + y)^n) ) = (1*x + 1*y)/1 + (3*x^2 + 6*x*y + 3*y^2)/2 + (4*x^3 + 12*x^2*y + 12*x*y^2 + 4*y^3)/3 + (7*x^4 + 28*x^3*y + 42*x^2*y^2 + 28*x*y^3 + 7*y^4)/4 + (6*x^5 + 30*x^4*y + 60*x^3*y^2 + 60*x^2*y^3 + 30*x*y^4 + 6*y^5)/5 + (12*x^6 + 72*x^5*y + 180*x^4*y^2 + 240*x^3*y^3 + 180*x^2*y^4 + 72*x*y^5 + 12*y^6)/6 + (8*x^7 + 56*x^6*y + 168*x^5*y^2 + 280*x^4*y^3 + 280*x^3*y^4 + 168*x^2*y^5 + 56*x*y^6 + 8*y^7)/7 + (15*x^8 + 120*x^7*y + 420*x^6*y^2 + 840*x^5*y^3 + 1050*x^4*y^4 + 840*x^3*y^5 + 420*x^2*y^6 + 120*x*y^7 + 15*y^8)/8 + ...

begins

n=0: [0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ..., sigma(k), ...];

n=1: [1, 6, 12, 28, 30, 72, 56, 120, 117, 180, ...];

n=2: [3, 12, 42, 60, 180, 168, 420, 468, 810, 660, ...];

n=3: [4, 28, 60, 240, 280, 840, 1092, 2160, 1980, 6160, ...];

n=4: [7, 30, 180, 280, 1050, 1638, 3780, 3960, 13860, 10010, ...];

n=5: [6, 72, 168, 840, 1638, 4536, 5544, 22176, 18018, 48048, ...];

n=6: [12, 56, 420, 1092, 3780, 5544, 25872, 24024, 72072, 120120, ...];

n=7: [8, 120, 468, 2160, 3960, 22176, 24024, 82368, 154440, 354640, ...];

n=8: [15, 117, 810, 1980, 13860, 18018, 72072, 154440, 398970, 437580, ...];

n=9: [13, 180, 660, 6160, 10010, 48048, 120120, 354640, 437580, 1896180, ...];

n=10: [18, 132, 1848, 4004, 24024, 72072, 248248, 350064, 1706562, 1847560, ...]; ...

in which the diagonal of coefficients of x^n*y^n/(2*n) equals

[0, 6, 42, 240, 1050, 4536, 25872, 82368, 398970, 1896180, ..., 2*a(n), ...],

which is twice this sequence.

PROG

(PARI) {a(n) = sigma(2*n) * binomial(2*n, n)/2}

for(n=1, 30, print1( a(n), ", ") )

(PARI) /* [x^n*y^n/n] log( Product_{n>=1} 1/(1 - (x + y)^n) ) */

N=30

{L = sum(n=1, 2*N+1, -log(1 - (x + y)^n +x*O(x^(2*N)) +y*O(y^(2*N))) ); }

{a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}

for(n=1, N, print1( a(n), ", ") )

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Dec 07 2018

STATUS

approved

editing

#2 by Paul D. Hanna at Fri Nov 30 20:21:43 EST 2018
KEYWORD

allocating

allocated

#1 by Paul D. Hanna at Fri Nov 30 20:21:43 EST 2018
NAME

allocated for Paul D. Hanna

KEYWORD

allocating

STATUS

approved