editing
approved
editing
approved
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 22 2022
approved
editing
editing
approved
#Alternative program based on conjectural g.f.
G := add(x^(2*(n+1)^2)/mul(1 - x^k, k=1..2*n+1), n = 0..6):
S := series(G, x, 101):
seq(coeff(S, x, j), j = 1..100); # Peter Bala, Feb 02 2021
proposed
editing
editing
proposed
Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - Peter Bala, Feb 02 2021
#Alternative program based on conjectural g.f.
G := add(x^(2*(n+1)^2)/mul(1 - x^k, k=1..2*n+1), n = 0..6):
S := series(G, x, 101):
seq(coeff(S, x, j), j = 1..100); # Peter Bala, Feb 02 2021
approved
editing
proposed
approved
editing
proposed
Robert Israel, <a href="/A237757/b237757.txt">Table of n, a(n) for n = 1..10000</a>
f:= proc(n) local t, k, np;
t:= 0;
for k from 1 do
np:= n - 1 - 2*k*(k-1);
if np < 2*k-1 then return t fi;
t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np, 2*k-2)
od;
end proc:
map(f, [$1..100]); # Robert Israel, Jul 01 2020
approved
editing
proposed
approved