proposed
approved
proposed
approved
editing
proposed
Number of (n+2)X9 X 9 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column.
Column 7 of A202461.
Empirical: a(n) = (1/60480)*n^9 + (1/672)*n^8 + (163/3360)*n^7 + (119/144)*n^6 + (24221/2880)*n^5 + (15553/288)*n^4 + (1671487/7560)*n^3 + (282325/504)*n^2 + (404227/420)*n + 937.
Conjectures from Colin Barker, Jun 01 2018: (Start)
G.f.: x*(2744 - 19376*x + 64812*x^2 - 131502*x^3 + 175860*x^4 - 159456*x^5 + 97542*x^6 - 38691*x^7 + 9010*x^8 - 937*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
Some solutions for 6X6n=4:
Cf. A202461.
R. H. Hardin , Dec 19 2011
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Dec 19 2011
editing
approved
R. H. Hardin, <a href="/A202460/b202460.txt">Table of n, a(n) for n = 1..210</a>
allocated for Ron HardinNumber of (n+2)X9 binary arrays with consecutive windows of three bits considered as a binary number nondecreasing in every row and column
2744, 8064, 21972, 54618, 124740, 264822, 528390, 1000023, 1808746, 3145568, 5286030, 8618736, 13680954, 21202494, 32159196, 47837493, 69911652, 100535440, 142450112, 199110774, 274833336, 374964438, 506076906, 676193475, 895041702
1,1
Column 7 of A202461
Empirical: a(n) = (1/60480)*n^9 + (1/672)*n^8 + (163/3360)*n^7 + (119/144)*n^6 + (24221/2880)*n^5 + (15553/288)*n^4 + (1671487/7560)*n^3 + (282325/504)*n^2 + (404227/420)*n + 937
Some solutions for 6X6
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..1..0..0
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..1..1..1
..0..0..0..0..0..0..0..1..0....0..0..0..0..0..1..1..1..1
..0..0..0..0..0..0..1..1..0....0..1..1..1..1..1..1..1..1
..0..0..0..0..0..0..0..1..0....1..1..1..1..1..1..1..1..1
..0..0..0..0..0..0..1..1..1....1..1..1..1..1..1..1..1..1
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Dec 19 2011
approved
editing
allocated for Ron Hardin
allocated
approved