[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A187660 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle read by rows: T(n,k) = (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n.
(history; published version)
#48 by Hugo Pfoertner at Mon Jan 10 03:29:08 EST 2022
STATUS

reviewed

approved

#47 by Joerg Arndt at Mon Jan 10 03:05:14 EST 2022
STATUS

proposed

reviewed

#46 by Michel Marcus at Mon Jan 10 00:51:36 EST 2022
STATUS

editing

proposed

#45 by Michel Marcus at Mon Jan 10 00:51:32 EST 2022
LINKS

Guoce Xin and Yueming Zhong, <a href="https://arxiv.org/abs/2201.02376">Proving some conjectures on Kekulé numbers for certain benzenoids by using Chebyshev polynomials</a>, arXiv:2201.02376 [math.CO], 2022.

STATUS

approved

editing

#44 by Bruno Berselli at Fri Mar 08 03:29:55 EST 2019
STATUS

reviewed

approved

#43 by Michel Marcus at Fri Mar 08 00:53:17 EST 2019
STATUS

proposed

reviewed

#42 by Jon E. Schoenfield at Fri Mar 08 00:01:30 EST 2019
STATUS

editing

proposed

#41 by Jon E. Schoenfield at Fri Mar 08 00:01:26 EST 2019
NAME

Triangle read by rows: T(n,k) = (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n.

COMMENTS

Conjecture: (i) Let n > 1 and N=2*n+1. Row n of T gives the coefficients of the characteristic polynomial p_N(x)=Sum_{k=0..n} T(n,k)*x^(n-k) of the n X n Danzer matrix D_{N,n-1} = {{0,...,0,1}, {0,...,0,1,1}, ..., {0,1,...,1}, {1,...,1}}. (ii) Let S_0(t)=1, S_1(t)=t and S_r(t)=t*S_(r-1)(t)-S_(r-2)(t), r > 1 (cf. A049310). Then p_N(x)=0 has solutions w_{N,j}=S_(n-1)(phi_{N,j}), where phi_{N,j}=2*(-1)^(j+1)*cos(j*Pi/N), j = 1..n. - _L. Edson Jeffery, _, Dec 18 2011

EXAMPLE

1;

1 , -1;

1 , -1 , -1;

1 , -2 , -1 , 1;

1 , -2 , -3 , 1 , 1;

1 , -3 , -3 , 4 , 1 , -1;

1 , -3 , -6 , 4 , 5 , -1 , -1;

1 , -4 , -6 , 10 , 5 , -6 , -1 , 1;

1 , -4 , -10 , 10 , 15 , -6 , -7 , 1 , 1;

1 , -5 , -10 , 20 , 15 , -21 , -7 , 8 , 1 , -1;

1 , -5 , -15 , 20 , 35 , -21 , -28 , 8 , 9 , -1 , -1;

1 , -6 , -15 , 35 , 35 , -56 , -28 , 36 , 9 , -10 , -1 , 1;

MAPLE

A187660 := proc(n, k): (-1)^(floor(3*k/2))*binomial(floor((n+k)/2), k) end: seq(seq(A187660(n, k), k=0..n), n=0..11); [# _Johannes W. Meijer, _, Aug 08 2011]

STATUS

approved

editing

#40 by N. J. A. Sloane at Sat Oct 21 22:04:49 EDT 2017
STATUS

proposed

approved

#39 by Michel Marcus at Sat Oct 21 03:47:31 EDT 2017
STATUS

editing

proposed

Discussion
Sat Oct 21
04:01
L. Edson Jeffery: ok