proposed
approved
proposed
approved
editing
proposed
Hacène Belbachir and El-Mehdi Mehiri, <a href="https://arxiv.org/abs/2210.08657">Enumerating moves in the optimal solution of the Tower of Hanoi</a>, arXiv:2210.08657 [math.CO], 2022.
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,4).
approved
editing
editing
approved
a(n) = A034299(2*n). - Michael Somos, Oct 16 2020
G.f. = 1 + 4*x + 15*x^2 + 58*x^3 + 229*x^4 + 912*x^5 + 3643*x^6 + ... - Michael Somos, Oct 16 2020
(PARI) {a(n) = (2^(2*n + 3) + 3*n + 1)/9}; /* Michael Somos, Oct 16 2020 */
approved
editing
editing
approved
LinearRecurrence[{6, -9, 4}, {1, 4, 15}, 30] (* Harvey P. Dale, Oct 04 2018 *)
approved
editing
proposed
approved
editing
proposed
This is the sequence A(1,4;5,-4;-1,n) of the family of sequences [a,b:c,d:k] considered by G. _Gary Detlefs, _, and treated as A(a,b;c,d;k) in the W. Lang's link given below. [_- _Wolfdieter Lang_, Nov 16 2013]
a(n) =[ (3n + 1 + 2^(2n+3)])/9. [From _- _Emeric Deutsch_, Jun 20 2009]
G.f. : ( -1+2*x ) / ( (-1+4*x)*(x-1)^2 ). - R. J. Mathar, Jun 28 2012
From Wolfdieter Lang, Nov 16 2013 : (Start)
a := proc (n) options operator, arrow: (1/3)*n+1/9+(1/9)*2^(2*n+3) end proc: seq(a(n), n = 0 .. 25); [From _# _Emeric Deutsch_, Jun 20 2009]
approved
editing