_Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 14 2005
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 14 2005
Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^3], and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+2*j)] + x*y*GF[T^(3*p)].
nonn,tabl,new
nonn,tabl,new
Paul D . Hanna (pauldhanna(AT)juno.com), Oct 14 2005
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix 3-rd third power of T.
nonn,tabl,new
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix 3-rd power of T.
1, 1, 1, 3, 4, 1, 21, 33, 13, 1, 331, 586, 294, 40, 1, 11973, 23299, 13768, 2562, 121, 1, 1030091, 2166800, 1447573, 333070, 22569, 364, 1, 218626341, 490872957, 361327779, 97348117, 8466793, 200931, 1093, 1, 118038692523, 280082001078
0,4
Column 0 of the matrix power p, T^p, equals the number of 3-tournament sequences having initial term p.
Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^3], and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+2*j)] + x*y*GF[T^(3*p)].
Triangle T begins:
1;
1,1;
3,4,1;
21,33,13,1;
331,586,294,40,1;
11973,23299,13768,2562,121,1;
1030091,2166800,1447573,333070,22569,364,1; ...
Matrix square T^2 (A113088) begins:
1;
2,1;
10,8,1;
114,118,26,1;
2970,3668,1108,80,1;
182402,257122,96416,9964,242,1; ...
where column 0 equals A113089.
Matrix cube T^3 (A113090) begins:
1;
3,1;
21,12,1;
331,255,39,1;
11973,11326,2442,120,1;
1030091,1136709,310864,22206,363,1; ...
where adjacent sums in row n of T^3 forms row n+1 of T.
(PARI) {T(n, k)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^3)[r-1, c-1])+(M^3)[r-1, c]))); return(M[n+1, k+1])}
nonn,tabl
Paul D Hanna (pauldhanna(AT)juno.com), Oct 14 2005
approved