[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A113084 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix third power of T.
(history; published version)
#5 by Russ Cox at Fri Mar 30 18:36:51 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Oct 14 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
FORMULA

Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^3], and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+2*j)] + x*y*GF[T^(3*p)].

KEYWORD

nonn,tabl,new

#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,tabl,new

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Oct 14 2005

#2 by N. J. A. Sloane at Fri Sep 29 03:00:00 EDT 2006
NAME

Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix 3-rd third power of T.

KEYWORD

nonn,tabl,new

#1 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
NAME

Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix 3-rd power of T.

DATA

1, 1, 1, 3, 4, 1, 21, 33, 13, 1, 331, 586, 294, 40, 1, 11973, 23299, 13768, 2562, 121, 1, 1030091, 2166800, 1447573, 333070, 22569, 364, 1, 218626341, 490872957, 361327779, 97348117, 8466793, 200931, 1093, 1, 118038692523, 280082001078

OFFSET

0,4

COMMENTS

Column 0 of the matrix power p, T^p, equals the number of 3-tournament sequences having initial term p.

FORMULA

Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^3], and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+2*j)] + x*y*GF[T^(3*p)].

EXAMPLE

Triangle T begins:

1;

1,1;

3,4,1;

21,33,13,1;

331,586,294,40,1;

11973,23299,13768,2562,121,1;

1030091,2166800,1447573,333070,22569,364,1; ...

Matrix square T^2 (A113088) begins:

1;

2,1;

10,8,1;

114,118,26,1;

2970,3668,1108,80,1;

182402,257122,96416,9964,242,1; ...

where column 0 equals A113089.

Matrix cube T^3 (A113090) begins:

1;

3,1;

21,12,1;

331,255,39,1;

11973,11326,2442,120,1;

1030091,1136709,310864,22206,363,1; ...

where adjacent sums in row n of T^3 forms row n+1 of T.

PROG

(PARI) {T(n, k)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^3)[r-1, c-1])+(M^3)[r-1, c]))); return(M[n+1, k+1])}

CROSSREFS

Cf. A113081; A097710, A113095, A113106; A113085 (column 0), A113088 (T^2), A113087 (row sums).

KEYWORD

nonn,tabl

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Oct 14 2005

STATUS

approved