[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A112108 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Unique sequence of numbers {1,2,3,4} where g.f. A(x) satisfies A(x) = B(B(B(B(x)))) (4th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.
(history; published version)
#10 by Alois P. Heinz at Mon Oct 08 18:36:03 EDT 2018
STATUS

editing

approved

#9 by Alois P. Heinz at Mon Oct 08 17:34:23 EDT 2018
NAME

Unique sequence of numbers {1,2,3,4} where g.f. A(x) satisfies A(x) = B(B(B(B(x)))) (4th self-COMPOSE) such that B(x) is an integer sequence, series, with A(0) = 0.

STATUS

proposed

editing

#8 by Jon E. Schoenfield at Mon Oct 08 16:43:57 EDT 2018
STATUS

editing

proposed

#7 by Jon E. Schoenfield at Mon Oct 08 16:43:55 EDT 2018
NAME

Unique sequence of numbers {1,2,3,4} where g.f. A(x) satisfies A(x) = B(B(B(B(x)))) (4th self-COMPOSE) such that B(x) is an integer series, sequence, with A(0) = 0.

EXAMPLE

G.f.: A(x) = x + 4*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + ...

B(x) = x + x^2 - 2*x^3 + 8*x^4 - 38*x^5 + 194*x^6 - 992*x^7 + ...

STATUS

approved

editing

#6 by Jon E. Schoenfield at Sat Mar 14 10:04:14 EDT 2015
STATUS

editing

approved

#5 by Jon E. Schoenfield at Sat Mar 14 10:04:11 EDT 2015
NAME

Unique sequence of numbers {1,2,3,4} where g.f. A(x) satisfies A(x) = B(B(B(B(x)))) (4-th 4th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

STATUS

approved

editing

#4 by Russ Cox at Fri Mar 30 18:36:51 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Aug 27 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,new

nonn

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Aug 27 2005

#2 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
PROG

(PARI) {a(n, m=4)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); G=F+x*O(x^n); for(i=1, m-1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
NAME

Unique sequence of numbers {1,2,3,4} where g.f. A(x) satisfies A(x) = B(B(B(B(x)))) (4-th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

DATA

1, 4, 4, 2, 4, 2, 4, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 3, 4, 3, 2, 4, 1, 2, 4, 2, 3, 1, 4, 2, 4, 3, 1, 4, 4, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 4, 1, 4, 2, 2, 1, 4, 3, 3, 3, 1, 1, 3, 3, 4, 4, 3, 3, 3, 3, 1, 4, 4, 3, 2, 4, 2, 2, 2, 1, 3, 4, 2, 3, 3, 1, 4, 2, 3, 1, 1, 3, 3, 4, 2, 4, 3, 1, 4, 3, 2, 1, 1, 1, 2, 1, 4, 4

OFFSET

1,2

EXAMPLE

G.f.: A(x) = x + 4*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 2*x^6 +...

then A(x) = B(B(B(B(x)))) where

B(x) = x + x^2 - 2*x^3 + 8*x^4 - 38*x^5 + 194*x^6 - 992*x^7 +...

is the g.f. of A112109.

PROG

(PARI) {a(n, m=4)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); G=F+x*O(x^n); for(i=1, m-1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

KEYWORD

nonn

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Aug 27 2005

STATUS

approved