[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A111579 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.
(history; published version)
#10 by Hugo Pfoertner at Tue Aug 01 07:39:43 EDT 2023
STATUS

reviewed

approved

#9 by Joerg Arndt at Tue Aug 01 07:00:02 EDT 2023
STATUS

proposed

reviewed

#8 by Jean-François Alcover at Tue Aug 01 03:49:18 EDT 2023
STATUS

editing

proposed

#7 by Jean-François Alcover at Tue Aug 01 03:49:11 EDT 2023
MATHEMATICA

T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];

A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];

Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)

STATUS

approved

editing

#6 by Russ Cox at Fri Mar 30 17:39:07 EDT 2012
MAPLE

seq(seq(A111579(r, c), c=0..r), r=0..10) ; # _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 30 2009

EXTENSIONS

Edited by _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 30 2009

Discussion
Fri Mar 30
17:39
OEIS Server: https://oeis.org/edit/global/190
#5 by Russ Cox at Fri Mar 30 17:25:12 EDT 2012
AUTHOR

_Gary W. Adamson (qntmpkt(AT)yahoo.com), _, Aug 07 2005

Discussion
Fri Mar 30
17:25
OEIS Server: https://oeis.org/edit/global/135
#4 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Generalized Bell number triangle, Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.

COMMENTS

Generalized Triangles of generalized Stirling number numbers of the second kind triangles may be defined by the generating operation recurrences T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence initialized by T(0,0)=T(1,0)=T(1,1,)=1... Q=1 generates Pascal's triangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue of the Stirling number of the second kind triangle); etc... A007318,

Q=k+1 generates A008277, Q=2k+1 generates A039755, Q=3k+1 generates A111577, Q=4k+1 generates A111578, Q=5k+1 generates A166973.

(These definitions assume row and column enumeration 0<=n, 0<=k<=n.)

Each of these triangles characterized by Q=(c-1)*k+1 has row sums sum_{k=0..n} T(n,k), which define the column A(.,c).

FORMULA

Columns are row sums of generalized Stirling number of the second kind triangles.

A(r=n+c,c) = sum_{k=0..n} T(n,k,c), 0<=c<=r where T(n,k,c) = T(n-1,k-1,c) + ((c-1)*k+1)*T(n-1,k,c).

A(r,0) = 1.

A(r,1) = 2^(r-1).

A(r,2) = A000110(r-1).

A(r,3) = A007405(r-3).

EXAMPLE

Column 2 (1, 2, 5, 15, 52, 203...are Bell numbers deleting the first 1); which are row sums of the Stirling number of the second kind triangle A008277.

Column 3 (1, 2, 6, 24, 116...) = row sums of A039755, a Stirling number of the second kind analogue.

MAPLE

T := proc(n, k, c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1, k-1, c)+((c-1)*k+1)*procname(n-1, k, c) ; fi; end:

A111579 := proc(r, c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n, k, c), k=0..n) ; end if; end:

seq(seq(A111579(r, c), c=0..r), r=0..10) ; # R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 30 2009

KEYWORD

nonn,tabl,uned,new

EXTENSIONS

Edited by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 30 2009

#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
NAME

Generalized Bell number triangle, read by rows.

KEYWORD

nonn,tabl,uned,new

#2 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
COMMENTS

Generalized Stirling number of the second kind triangles may be defined by the generating operation T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence (1,1,1...Pascal's Triangletriangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue to of the Stirling number of the second kind triangle); etc...

KEYWORD

nonn,tabl,uned,new

#1 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
NAME

Generalized Bell number triangle, by rows.

DATA

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 15, 6, 2, 1, 1, 32, 52, 24, 7, 2, 1, 1, 64, 203, 116, 35, 8, 2, 1, 1, 128, 877, 648, 214, 48, 9, 2, 1, 1, 256, 4140, 4088, 1523, 352, 63, 10, 2, 1, 1, 512, 21147, 28640, 12349, 3008, 536, 80, 11, 2, 1

OFFSET

0,5

COMMENTS

Generalized Stirling number of the second kind triangles may be defined by the generating operation T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence (1,1,1...Pascal's Triangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue to the Stirling number of the second kind triangle); etc...

FORMULA

Columns are row sums of generalized Stirling number of the second kind triangles.

EXAMPLE

Column 2 (1, 2, 5, 15, 52, 203...are Bell numbers deleting the first 1); which are row sums of the Stirling number of the second kind triangle A008277.

Column 3 (1, 2, 6, 24, 116...) = row sums of A039755, a Stirling number of the second kind analogue.

KEYWORD

nonn,tabl,uned

AUTHOR

Gary W. Adamson (qntmpkt(AT)yahoo.com), Aug 07 2005

STATUS

approved