reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];
A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];
Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)
approved
editing
seq(seq(A111579(r, c), c=0..r), r=0..10) ; # _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 30 2009
Edited by _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 30 2009
_Gary W. Adamson (qntmpkt(AT)yahoo.com), _, Aug 07 2005
Generalized Bell number triangle, Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.
Generalized Triangles of generalized Stirling number numbers of the second kind triangles may be defined by the generating operation recurrences T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence initialized by T(0,0)=T(1,0)=T(1,1,)=1... Q=1 generates Pascal's triangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue of the Stirling number of the second kind triangle); etc... A007318,
Q=k+1 generates A008277, Q=2k+1 generates A039755, Q=3k+1 generates A111577, Q=4k+1 generates A111578, Q=5k+1 generates A166973.
(These definitions assume row and column enumeration 0<=n, 0<=k<=n.)
Each of these triangles characterized by Q=(c-1)*k+1 has row sums sum_{k=0..n} T(n,k), which define the column A(.,c).
T := proc(n, k, c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1, k-1, c)+((c-1)*k+1)*procname(n-1, k, c) ; fi; end:
A111579 := proc(r, c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n, k, c), k=0..n) ; end if; end:
seq(seq(A111579(r, c), c=0..r), r=0..10) ; # R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 30 2009
nonn,tabl,uned,new
Edited by R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 30 2009
Generalized Bell number triangle, read by rows.
nonn,tabl,uned,new
Generalized Stirling number of the second kind triangles may be defined by the generating operation T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence (1,1,1...Pascal's Triangletriangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue to of the Stirling number of the second kind triangle); etc...
nonn,tabl,uned,new
Generalized Bell number triangle, by rows.
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 15, 6, 2, 1, 1, 32, 52, 24, 7, 2, 1, 1, 64, 203, 116, 35, 8, 2, 1, 1, 128, 877, 648, 214, 48, 9, 2, 1, 1, 256, 4140, 4088, 1523, 352, 63, 10, 2, 1, 1, 512, 21147, 28640, 12349, 3008, 536, 80, 11, 2, 1
0,5
Generalized Stirling number of the second kind triangles may be defined by the generating operation T(n,k) = T(n-1,k-1) + Q*T(n-1,k) where Q denotes an arithmetic sequence (1,1,1...Pascal's Triangle); (1,2,3...Stirling number of the second kind triangle); (1,3,5...A039755 an analogue to the Stirling number of the second kind triangle); etc...
Columns are row sums of generalized Stirling number of the second kind triangles.
nonn,tabl,uned
Gary W. Adamson (qntmpkt(AT)yahoo.com), Aug 07 2005
approved