proposed
approved
proposed
approved
editing
proposed
a(7) corrected, inserted, a(89)-a(42) from Charles R Greathouse IV, Jun 03 2013
Largest prime p such that the sum of n consecutive primes plus p is equal to (n+1)^3.
5, 19, 41, 89, 163, 271, 19, 631, 677, 1103, 1237, 1879, 2053, 3049, 3299, 4229, 5333, 5857, 7219, 7607, 9859, 11117, 12577, 14173, 16417, 16223, 20477, 22679, 25409, 26833, 30509, 32771, 36887, 39989, 43759, 47911, 52127, 56237, 60013, 65657, 69691, 74887
Does a(n) exist for each n? - Charles R Greathouse IV, Jun 03 2013
Charles R Greathouse IV, <a href="/A100572/b100572.txt">Table of n, a(n) for n = 1..10000</a>
(PARI) a(n)=if(n==1, return(5)); my(v=primes(n), s=sum(i=1, n, v[i]), N=(n+1)^3); forprime(p=v[#v]+1, N, if(isprime(N-s), return(N-s)); if(N<s, return(-1)); s+=p-v[1]; v=concat(v[2..n], p)) \\ Charles R Greathouse IV, Jun 03 2013
a(7) corrected, a(8)-a(42) from Charles R Greathouse IV, Jun 03 2013
proposed
editing
editing
proposed
0,1,1
approved
editing
_Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), _, Nov 29 2004
Largest prime p such that the sum of n consecutive primes plus p is equal to n^3.
5, 19, 41, 89, 163, 271, 631
0,1
a(2)=19 because 3+5+19=3^3;
a(3)=41 because 5+7+11+41=4^3;
a(4)=89 because 5+7+11+13+89=5^3.
nonn
Giovanni Teofilatto (g.teofilatto(AT)tiscalinet.it), Nov 29 2004
approved