reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,-17,1).
a(n) = (T(n, 8)-1)/7 with Chebyshev's polynomials of the first kind evaluated at x=8: T(n, 8)=A001081(n)= ((8+3*sqrt(7))^n + (8-3*sqrt(7))^n)/2.
a(n) = 16*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=18.
proposed
editing
editing
proposed
Michael De Vlieger, <a href="/A098303/b098303.txt">Table of n, a(n) for n = 0..832</a>
S. Barbero, U. Cerruti, and N. Murru, <a href="http://www.seminariomatematico.polito.it/rendiconti/78-1/BarberoCerrutiMurru.pdf">On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy</a>, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 17] &[18] (* Michael De Vlieger, Feb 23 2021 *)
approved
editing
Wolfdieter Lang (wolfdieter.lang_AT_physik_DOT_uni-karlsruhe_DOT_de), Oct 18 2004
Wolfdieter Lang, Oct 18 2004
<a href="/Sindx_index/Ch.html#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
<a href="/Sindx_Ch.html#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
nonn,easy,new
<a href="http://www.research.att.com/~njas/sequences/Sindx_Ch.html#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
nonn,easy,new