[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A085906 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Ramanujan sum c_n(6).
(history; published version)
#32 by Peter Luschny at Sun Jan 21 02:21:45 EST 2024
STATUS

reviewed

approved

#31 by Joerg Arndt at Sun Jan 21 01:19:34 EST 2024
STATUS

proposed

reviewed

#30 by Amiram Eldar at Sun Jan 21 01:08:03 EST 2024
STATUS

editing

proposed

#29 by Amiram Eldar at Sun Jan 21 01:04:01 EST 2024
FORMULA

Multiplicative with a(2) = 1, a(2^2) = -2, and a(2^e) = 0 for e >= 3, a(3) = 2, a(3^2) = -3, and a(3^e) = 0 for e >= 3, and for a prime p >= 5, a(p) = -1, and a(p^e) = 0 for e >= 2.

#28 by Amiram Eldar at Sun Jan 21 00:44:16 EST 2024
CROSSREFS

Cf. A000010, A008683, A086831, A085097, A085384, A085639 for Ramanujan sums c_n(2) .. c_n(5).

Cf. A000010, A008683.

#27 by Amiram Eldar at Sun Jan 21 00:43:10 EST 2024
CROSSREFS

Cf. A000010, A008683, A086831, A085097, A085384, A085639 for Ramanujan sums c_n(2) .. c_n(5).

#26 by Amiram Eldar at Sun Jan 21 00:40:50 EST 2024
REFERENCES

T. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.

FORMULA

From Amiram Eldar, Jan 21 2024: (Start)

Multiplicative with a(2) = 1, a(2^2) = -2, and a(2^e) = 0 for e >= 3, a(3) = 2, a(3^2) = -3, and a(3^e) = 0 for e >= 3, and for a prime p >=5, a(p) = -1, and a(p^e) = 0 for e >= 2.

Sum_{k=1..n} abs(a(k)) ~ (12/Pi^2) * n. (End)

MATHEMATICA

f[p_, e_] := If[e == 1, -1, 0]; f[2, e_] := Switch[e, 1, 1, 2, -2, _, 0]; f[3, e_] := Switch[e, 1, 2, 2, -3, _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)

CROSSREFS

Cf. A000010, A086831, A085097, A085384, A085639 for Ramanujan sums c_n(2) .. c_n(5).

STATUS

approved

editing

#25 by N. J. A. Sloane at Sat Aug 24 21:16:00 EDT 2019
STATUS

editing

approved

#24 by N. J. A. Sloane at Sat Aug 24 21:15:27 EDT 2019
LINKS

Peter H. van der Kamp, <a href="http://emis.impa.br/EMIS/journals/INTEGERS/papers/n24/n24.Abstract.html">On the Fourier transform of the greatest common divisor</a>, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]

Peter H. van der Kamp, <a href="http://emis.impa.br/EMIS/journals/INTEGERS/papers/n24/n24.Abstract.html">On the Fourier transform of the greatest common divisor</a>, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]

STATUS

proposed

editing

Discussion
Sat Aug 24
21:16
N. J. A. Sloane: :van der ..." goes under "v" in tghe OEIS
#23 by Petros Hadjicostas at Sat Aug 24 20:57:58 EDT 2019
STATUS

editing

proposed