[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A064412 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage.
(history; published version)
#20 by Harvey P. Dale at Tue Apr 12 03:20:53 EDT 2016
STATUS

editing

approved

#19 by Harvey P. Dale at Tue Apr 12 03:20:43 EDT 2016
MATHEMATICA

LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 5, 14, 32, 60, 103, 160, 238}, 50] (* Harvey P. Dale, Apr 12 2016 *)

STATUS

approved

editing

#18 by R. J. Mathar at Sat Oct 31 15:15:28 EDT 2015
STATUS

editing

approved

#17 by R. J. Mathar at Sat Oct 31 15:15:19 EDT 2015
LINKS

<a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,2,-2,0,2,-1).

FORMULA

a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - _Len Smiley (smiley(AT)math.uaa.alaska.edu), _, Oct 07 2001

KEYWORD

nonn,easy

EXTENSIONS

More terms from Len Smiley (smiley(AT)math.uaa.alaska.edu), Oct 07 2001

STATUS

approved

editing

#16 by Wesley Ivan Hurt at Sat Jun 28 01:28:29 EDT 2014
STATUS

reviewed

approved

#15 by Michel Marcus at Sat Jun 28 01:07:26 EDT 2014
STATUS

proposed

reviewed

#14 by Wesley Ivan Hurt at Fri Jun 27 23:32:23 EDT 2014
STATUS

editing

proposed

#13 by Wesley Ivan Hurt at Fri Jun 27 23:31:34 EDT 2014
DATA

1, 5, 14, 32, 60, 103, 160, 238, 335, 459, 606, 786, 994, 1241, 1520, 1844, 2205, 2617, 3070, 3580, 4136, 4755, 5424, 6162, 6955, 7823, 8750, 9758, 10830, 11989, 13216, 14536, 15929, 17421, 18990, 20664, 22420, 24287, 26240, 28310, 30471, 32755, 35134, 37642

MAPLE

A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # Wesley Ivan Hurt, Jun 27 2014

MATHEMATICA

CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)

STATUS

proposed

editing

#12 by Michel Marcus at Fri Jun 27 08:54:24 EDT 2014
STATUS

editing

proposed

#11 by Michel Marcus at Fri Jun 27 08:54:09 EDT 2014
FORMULA

a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - Luce ETIENNE, Jun 27 2014

STATUS

proposed

editing