[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Revision History for A057271 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).
(history; published version)
#16 by Michael De Vlieger at Sun Jan 16 17:46:36 EST 2022
STATUS

proposed

approved

#15 by Andrew Howroyd at Sun Jan 16 17:15:34 EST 2022
STATUS

editing

proposed

#14 by Andrew Howroyd at Sun Jan 16 17:13:22 EST 2022
PROG

(PARI) \\ Following Eqn 20 in the Robinson reference.

#13 by Andrew Howroyd at Sun Jan 16 14:57:33 EST 2022
LINKS

Andrew Howroyd, <a href="/A057271/b057271.txt">Table of n, a(n) for n = 1..2680</a> (rows 1..20)

#12 by Andrew Howroyd at Sun Jan 16 14:55:46 EST 2022
CROSSREFS
#11 by Andrew Howroyd at Sun Jan 16 14:53:36 EST 2022
LINKS

Andrew Howroyd, <a href="/A057271/b057271.txt">Table of n, a(n) for n = 1..2680</a>

R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.

EXAMPLE

[1], 1;

[2] 0,2,1],;

[3] 0,0,6,20,15,6,1],;

[4] 0,0,0,24,234,672,908,792,495,220,66,12,1],;

...

...

Number The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.

PROG

(PARI) \\ Following Eqn 20 in Robinson reference.

Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}

G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}

U(e, p)={Z(p, k->e^(k*(k-1)/2))}

DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}

StrongD(n, e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}

InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n, e))) ))}

row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }

{ for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022

CROSSREFS

Row sums give A049524. Cf. A057270, A057272-A057279.

The unlabeled version is A057278.

Cf. Cf. A057272, A057273, A057274, A057275, A062735.

STATUS

approved

editing

#10 by Bruno Berselli at Thu Feb 05 05:56:59 EST 2015
STATUS

proposed

approved

#9 by Michel Marcus at Thu Feb 05 05:42:55 EST 2015
STATUS

editing

proposed

#8 by Michel Marcus at Thu Feb 05 05:42:47 EST 2015
REFERENCES

V. Jovovic, G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000),151-163.

LINKS

V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00112-6">Enumeration of labeled quasi-initially connected digraphs</a>, Discrete Math., 224 (2000), 151-163.

EXAMPLE

Triangle starts:

[1],

[0,2,1],

[0,0,6,20,15,6,1],

[0,0,0,24,234,672,908,792,495,220,66,12,1],

...

[1],[0,2,1],[0,0,6,20,15,6,1],[0,0,0,24,234,672,908,792,495,220,66,12,1],...; Number of digraphs with a source and a sink on 3 labeled nodes is 48=6+20+15+6+1.

STATUS

approved

editing

#7 by R. J. Mathar at Thu Jun 13 14:53:49 EDT 2013
STATUS

editing

approved