reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = Sum((1+p_1)*(1+p_2)*...)*(1+p_m)), summation being over all compositions (p_1, p_2, ..., p_m) of n. Example: a(3)=24; indeed, the compositions of 3 are (1,1,1), (1,2), (2,1), (3) and we have 2*2*2 + 2*3 + 3*2 + 4 = 24. - Emeric Deutsch, Oct 17 2010
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, 5170048, 17651648, 60266496, 205762688, 702517760, 2398545664, 8189147136, 27959497216, 95459694592, 325919783936, 1112759746560, 3799199418368, 12971278180352, 44286713884672, 151204299177984
D. Battaglino, J. M. Fedou, S. Rinaldi , and S. Socci, <a href="https://doi.org/10.46298/dmtcs.2370">The number of k-parallelogram polyominoes</a>, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154.
G. Castiglione, A. Frosini, E. Munarini, A. Restivo , and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.ejc.2006.06.020">Combinatorial aspects of L-convex polyominoes</a>, European J. Combin. 28 (2007), no. 6, 1724-1741.
E. Duchi, S. Rinaldi , and G. Schaeffer, <a href="https://arxiv.org/abs/math/0602124">The number of Z-convex polyominoes</a>, arXiv:math/0602124 [math.CO], 2006.