[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A002056 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of diagonal dissections of a convex n-gon into n-5 regions.
(history; published version)
#70 by Charles R Greathouse IV at Thu Sep 08 08:44:29 EDT 2022
PROG

(MAGMAMagma) [Binomial(n-3, 3)*Binomial(2*n-7, n-6)/(n-5): n in [6..30]]; // Vincenzo Librandi, Feb 18 2020

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#69 by Charles R Greathouse IV at Wed Apr 13 13:25:16 EDT 2022
LINKS

Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Discussion
Wed Apr 13
13:25
OEIS Server: https://oeis.org/edit/global/2938
#68 by Charles R Greathouse IV at Fri Mar 12 22:32:35 EST 2021
LINKS

Simon Plouffe, <a href="https://arxiv.org/ftp/arxiv/papers/0911abs/0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

Discussion
Fri Mar 12
22:32
OEIS Server: https://oeis.org/edit/global/2898
#67 by N. J. A. Sloane at Mon Feb 22 12:12:20 EST 2021
LINKS

Simon Plouffe, <a href="httphttps://www.lacim.uqamarxiv.caorg/ftp/arxiv/%7Eplouffepapers/articles0911/MasterThesis0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

Discussion
Mon Feb 22
12:12
OEIS Server: https://oeis.org/edit/global/2887
#66 by N. J. A. Sloane at Tue Jan 19 11:48:00 EST 2021
LINKS

Ronald C. R. Read, <a href="http://dx.doi.org/10.1007/BF03031688">On general dissections of a polygon</a>, Aequat. math. 18 (1978) 370-388, Table 1.

Discussion
Tue Jan 19
11:48
OEIS Server: https://oeis.org/edit/global/2884
#65 by Alois P. Heinz at Tue Feb 18 07:23:59 EST 2020
STATUS

proposed

approved

#64 by Michel Marcus at Tue Feb 18 02:02:03 EST 2020
STATUS

editing

proposed

#63 by Michel Marcus at Tue Feb 18 02:01:57 EST 2020
COMMENTS

a(n) = number Number of noncrossing partitions of 2n-7 into n-5 blocks all of size at least 2. - Oliver Pechenik, May 02 2014

LINKS

A. Cayley, <a href="httphttps://doi.org/10.1112/plms.oxfordjournals.org/content/s1-22/.1/.237.extract">On the partitions of a polygon</a>, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.

Simon Plouffe, <a href="https://arxiv.org/abs/0912.0072"> Une méthode pour obtenir la fonction génératrice d'une série</a>. , FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics; arXiv:0912.0072 [math.NT], 2009.

R. C. Read, <a href="/A001004/a001004.pdf">On general dissections of a polygon</a>, Preprint (1974).

STATUS

proposed

editing

#62 by Vincenzo Librandi at Tue Feb 18 01:56:06 EST 2020
STATUS

editing

proposed

#61 by Vincenzo Librandi at Tue Feb 18 01:55:47 EST 2020
DATA

1, 14, 120, 825, 5005, 28028, 148512, 755820, 3730650, 17978180, 84987760, 395482815, 1816357725, 8250123000, 37119350400, 165645101160, 733919156190, 3231337461300, 14147884842000, 61636377252450, 267325773340626, 1154761882042824, 4969989654817600

PROG

(MAGMA) [Binomial(n-3, 3)*Binomial(2*n-7, n-6)/(n-5): n in [6..30]]; // Vincenzo Librandi, Feb 18 2020

STATUS

approved

editing