OFFSET
0,2
COMMENTS
a(n) = B(3*n, 2*n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..350
Peter Bala, A recurrence for A363869
FORMULA
a(n) = Sum_{k = 0..2*n} binomial(3*n, k)^2 * binomial(5*n-k, 3*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(3*n, k)*binomial(5*n-k, 3*n)^2.
a(n) = hypergeom( [-2*n, -3*n, 3*n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
a(n) ~ 2^(4*n) * 3^(3*n) / (sqrt(5)*Pi*n). - Vaclav Kotesovec, Apr 27 2024
MAPLE
MATHEMATICA
A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1];
Array[A363869, 20, 0] (* Paolo Xausa, Feb 26 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jun 27 2023
STATUS
approved