[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A368278
Prime numbers that have an odd number of monotone Bacher representations (A368276).
1
2, 3, 11, 19, 29, 31, 37, 41, 47, 67, 73, 89, 97, 101, 103, 149, 151, 157, 163, 173, 179, 197, 229, 233, 251, 263, 269, 281, 283, 311, 349, 373, 383, 397, 409, 419, 433, 443, 463, 487, 491, 521, 523, 557, 577, 587, 601, 607, 619, 659, 661, 673, 677, 701, 719
OFFSET
1,1
COMMENTS
We call a ​quadruple (w, x, y, z) of nonnegative integers a monotone Bacher representation of n if and only if n = w*x + y*z and w <= x < y <= z.
LINKS
Roland Bacher, A quixotic proof of Fermat's two squares theorem for prime numbers, American Mathematical Monthly, Vol. 130, No. 9 (November 2023), 824-836; arXiv version, arXiv:2210.07657 [math.NT], 2022.
EXAMPLE
For n = 19, the 5 solutions are (w, x, y, z) = (0, 0, 1, 19), (1, 1, 2, 9), (1, 1, 3, 6), (1, 3, 4, 4), (2, 2, 3, 5).
MATHEMATICA
t[n_]:=t[n]=Select[Divisors[n], #^2<=n&];
A368276[n_]:=Total[t[n]]+Sum[Boole[wx<d*dx], {wx, Floor[n/2]}, {dx, t[wx]}, {d, t[n-wx]}];
Select[Prime[Range[200]], OddQ[A368276[#]]&] (* Paolo Xausa, Jan 02 2024 *)
PROG
(Julia)
using Nemo
println([n for n in 1:720 if isodd(A368276(n)) && is_prime(n)])
(Python)
from itertools import takewhile, islice
from sympy import divisors, nextprime
def A368278_gen(startvalue=2): # generator of terms >= startvalue
p = max(nextprime(startvalue-1), 2)
while True:
c = sum(takewhile(lambda x:x**2<=p, divisors(p))) & 1
for wx in range(1, (p>>1)+1):
for d1 in divisors(wx):
if d1**2 > wx:
break
m = p-wx
c = c+sum(1 for d in takewhile(lambda x:x**2<=m, divisors(m)) if wx<d*d1)&1
if c:
yield p
p = nextprime(p)
A368278_list = list(islice(A368278_gen(), 30)) # Chai Wah Wu, Dec 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 19 2023
STATUS
approved