[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A341999
a(n) = 1 if the k-th arithmetic derivative is nonzero for all k >= 0, otherwise 0.
13
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0
OFFSET
0
COMMENTS
Characteristic function of A099309.
FORMULA
a(n) = 1 if n is in A100716 or ends there by repeated applications of A003415, otherwise a(n) = 0 (when n instead reaches 0 by such iteration).
For all n, a(n) >= A341996(n).
For all n > 0, a(A099309(n)) = a(A100716(n)) = 1.
For all n > 0, a(n) = [A256750(n) < 1].
For all n > 0, a(n) >= [A129251(n)>0], i.e., if A129251(n) is nonzero, then certainly a(n) = 1.
For all n > 1, a(n) >= [A341997(n) > 1].
a(n) = 1 - A328308(n), and for n >= 1, a(n) = A342023(n) + A359546(n). - Antti Karttunen, Jan 05 2023
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A341999(n) = if(!n, n, while(n>1, n = A003415checked(n)); (!n));
CROSSREFS
Cf. A099308 (positions of zeros), A099309 (of ones), A328308 (one's complement), A342023, A359542 (inverse Möbius transform), A359546.
Sequence in context: A144596 A188187 A341996 * A118685 A244063 A080343
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 28 2021
STATUS
approved