[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A341528
a(n) = n * sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of the divisors of n.
21
1, 8, 18, 52, 40, 144, 84, 320, 279, 320, 154, 936, 234, 672, 720, 1936, 340, 2232, 456, 2080, 1512, 1232, 690, 5760, 1425, 1872, 4212, 4368, 928, 5760, 1178, 11648, 2772, 2720, 3360, 14508, 1554, 3648, 4212, 12800, 1804, 12096, 2064, 8008, 11160, 5520, 2538, 34848, 6517, 11400, 6120, 12168, 3180, 33696, 6160, 26880
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1) where q = nextPrime(p).
a(n) = n * A003973(n) = n * A000203(A003961(n)).
From Antti Karttunen, Mar 29 2021: (Start)
a(n) <= A341529(n).
a(n) = A341529(n) - A341512(n).
a(n) = A342662(A003961(n)).
(End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 2.26342530..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022
MATHEMATICA
Array[#1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 56] (* Michael De Vlieger, Feb 22 2021 *)
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
A003973(n) = sigma(A003961(n));
A341528(n) = (n*A003973(n));
CROSSREFS
Sequence in context: A335440 A066721 A079704 * A032795 A120543 A337836
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Feb 16 2021
STATUS
approved