[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344940
Numbers that are the sum of five fourth powers in six or more ways.
8
151300, 197779, 211059, 217154, 225890, 236194, 236675, 243235, 246674, 250834, 286114, 288579, 300835, 302130, 302210, 303235, 309059, 317795, 320195, 334819, 334899, 335443, 336210, 338914, 346835, 356899, 363379, 366995, 373234, 375619, 389875, 391154
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4 = 3^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 13^4 + 13^4 + 13^4 + 16^4 = 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved