[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344937
a(n) is the largest k such that when strings of zeros of lengths t = 1..k are inserted between every pair of adjacent digits of prime(n), the resulting numbers are all primes.
2
1, 1, 1, 3, 0, 0, 0, 1, 2, 0, 0, 2, 2, 1, 2, 4, 0, 1, 0, 2, 4, 0, 0, 1, 1, 2, 0, 3, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
5,4
COMMENTS
Initially, except for n = 1..4, similar to A290174, but the two sequences differ from n = 28 onwards.
EXAMPLE
For n = 8: prime(8) = 19 and the numbers 109, 1009 and 10009 are all prime, while 100009 is not. Thus it is possible to insert strings of zeros of lengths 1, 2 and 3 between all adjacent digits of 19 such that the resulting number is prime. Since 3 is the largest length of such a string in case of 19, a(8) = 3.
MATHEMATICA
Table[k=0; While[PrimeQ@FromDigits@Flatten@Riffle[IntegerDigits@Prime@n, {Table[0, k]}], k++]; k-1, {n, 5, 100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
insert_zeros(num, len) = my(d=digits(num), v=[]); for(k=1, #d-1, v=concat(v, concat([d[k]], vector(len)))); v=concat(v, d[#d]); eva(v)
a(n) = my(p=prime(n), ip=p); for(k=1, oo, ip=insert_zeros(p, k); if(!ispseudoprime(ip), return(k-1)))
(Python)
from sympy import isprime, prime
def insert_zeros(n, k): return int(("0"*k).join(list(str(n))))
def a(n):
pn, k = prime(n), 1
while isprime(insert_zeros(pn, k)): k += 1
return k - 1
print([a(n) for n in range(5, 92)]) # Michael S. Branicky, Jun 03 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, Jun 03 2021
STATUS
approved