[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A323261
A323260(n)/2.
2
0, 1, 3, 12, 48, 195, 791, 3211, 13031, 52884, 214614, 870949, 3534489, 14343685, 58209627, 236226664, 958656488, 3890425619, 15788149015, 64071562799, 260015607607, 1055196927408, 4282206617710, 17378077058869, 70523818494625, 286200191092217, 1161459364079427, 4713441487441732, 19128117041912800
OFFSET
0,3
LINKS
K. A. Van'kov, V. M. Zhuravlyov, Regular tilings and generating functions, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See Table 1, g_n/2.
FORMULA
Van'kov and Zhuravlyov give recurrences.
From Colin Barker, Jan 10 2019: (Start)
G.f.: x*(1 - x)^3*(1 + x) / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5).
a(n) = 5*a(n-1) - 3*a(n-2) - 5*a(n-3) + 7*a(n-4) - a(n-5) for n>5.
(End)
PROG
(PARI) concat(0, Vec(x*(1 - x)^3*(1 + x) / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5) + O(x^30))) \\ Colin Barker, Jan 10 2019
CROSSREFS
Cf. A323260.
Sequence in context: A002001 A164346 A113956 * A103943 A283679 A165328
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 09 2019
STATUS
approved