[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A164346
a(n) = 3 * 4^n.
14
3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
OFFSET
0,1
COMMENTS
Binomial transform of A000244 without initial 1.
Second binomial transform of A007283.
Third binomial transform of A010701.
Inverse binomial transform of A005053 without initial 1.
First differences of A024036. - Omar E. Pol, Feb 16 2013
FORMULA
a(n) = 4*a(n-1) for n > 1; a(0) = 3.
G.f.: 3/(1-4*x).
a(n) = A002001(n+1). a(n) = A096045(n)+2. a(n) = A140660(n)-1.
a(n) = A002023(n)/2. a(n) = A002063(n)/3. a(n) = A056120(n+3)/9.
Apparently a(n) = A084509(n+3)/2.
a(n) = A110594(n+1), n>1. - R. J. Mathar, Aug 17 2009
a(n) = 3*A000302(n). - Omar E. Pol, Feb 18 2013
a(n) = A000079(2*n) + A000079(2*n+1). - M. F. Hasler, Jul 28 2015
E.g.f.: 3*exp(4*x). - G. C. Greubel, Sep 15 2017
MATHEMATICA
3 4^Range[0, 30] (* Harvey P. Dale, Mar 11 2011 *)
PROG
(Magma) [ 3*4^n: n in [0..22] ];
(PARI) A164346(n)=3*4^n \\ M. F. Hasler, Jul 28 2015
(Python)
def A164346(n): return 3<<(n<<1) # Chai Wah Wu, Aug 30 2024
CROSSREFS
Cf. A000302 (powers of 4), A000244 (powers of 3), A007283 (3*2^n), A010701 (all 3's), A005053, A002001, A096045, A140660 (3*4^n+1), A002023 (6*4^n), A002063(9*4^n), A056120, A084509.
Sequence in context: A254942 A077828 A002001 * A113956 A323261 A103943
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 13 2009
STATUS
approved