[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A304521
a(n) is the number of prime powers k such that ceiling(log_2(k)) = n.
38
1, 2, 3, 4, 8, 9, 17, 26, 47, 81, 142, 264, 474, 883, 1629, 3045, 5735, 10780, 20429, 38688, 73654, 140426, 268341, 513867, 986034, 1894410, 3646135, 7027826, 13562626, 26208249, 50698866, 98184468, 190338062, 369326691, 717271794, 1394198587, 2712112562
OFFSET
1,2
COMMENTS
Prime powers are defined as numbers of the form p^k with p prime and k >= 1 (A246655).
LINKS
EXAMPLE
a(1)=1 because the interval [2,2] contains 1 prime power: 2.
a(2)=2 because the interval [3,4] contains 2 prime powers: 3 and 4=2^2.
a(3)=3 because the prime powers in [5,8] are 5, 7, and 8=2^3.
PROG
(PARI) a(n) = sum(k=2^(n-1)+1, 2^n, isprimepower(k) != 0); \\ Michel Marcus, May 17 2018
(Python)
from sympy import primepi, integer_nthroot
def A304521(n):
def f(x):
m = 1<<x
return int(sum(primepi(integer_nthroot(m, k)[0]) for k in range(1, x+1)))
return f(n)-f(n-1) # Chai Wah Wu, Jan 19 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Jon E. Schoenfield, May 13 2018
STATUS
approved