OFFSET
0,9
COMMENTS
a(n+1) is the sum of the smallest odd parts of the partitions of n into two distinct parts. For example, a(11) = 4; the partitions of 10 into two distinct parts are (9,1), (8,2), (7,3) and (6,4). The sum of the smallest odd parts in these partitions is then 1+3 = 4.
a(n+2) is the sum of the smallest odd parts of the partitions of n into two parts. For example, a(8) = 4; the partitions of 6 into two parts are (5,1), (4,2) and (3,3). The sum of the smallest odd parts is then 1+3 = 4.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
FORMULA
a(n) = A002265(n)^2.
a(4n) = A000290(n).
a(n) = Sum_{i=1..floor(n/2)-1} i * (i mod 2).
From Colin Barker, Nov 25 2017: (Start)
G.f.: x^4*(1 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2).
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n>8.
(End)
a(n) = (1/16)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2)^2. - Iain Fox, Dec 18 2017
MATHEMATICA
Floor[Range[0, 80]/4]^2
PROG
(Magma) [Floor(n/4)^2 : n in [0..100]];
(PARI) concat(vector(4), Vec(x^4*(1 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2) + O(x^100))) \\ Colin Barker, Nov 25 2017
(PARI) a(n) = (n\4)^2; \\ Altug Alkan, Dec 17 2017
(Python)
def A295643(n): return (n>>2)**2 # Chai Wah Wu, Feb 06 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Nov 25 2017
STATUS
approved