[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A270783
Numbers of the form p^2 + q^2 + r^2 + s^2 = a^2 + b^2 + c^2 for some primes p, q, r, and s and some integers a, b, and c.
2
16, 21, 26, 36, 37, 42, 52, 58, 61, 66, 68, 76, 82, 84, 100, 106, 108, 116, 132, 133, 138, 148, 154, 164, 172, 178, 180, 181, 186, 196, 202, 204, 212, 226, 228, 236, 244, 250, 260, 268, 276, 292, 298, 300, 301, 306, 308, 322, 324, 332, 340
OFFSET
1,1
COMMENTS
This sequence is infinite since 4p^2 = 0^2 + 0^2 + (2p)^2 is in the sequence for all primes p.
A069262 is a subsequence.
It appears at first that the squares of A139544(n) for n >= 3 are a subsequence. n=22 is the first counterexample, where A139544(22)^2 = 6084 is not an element of this sequence.
LINKS
EXAMPLE
a(1) = 16 = 2^2 + 2^2 + 2^2 + 2^2 = 0^2 + 0^2 + 4^2.
PROG
(Sage)
n=340 #change for more terms
P=prime_range(1, ceil(sqrt(n)))
S=cartesian_product_iterator([P, P, P, P])
A=list(Set([sum(i^2 for i in y) for y in S if sum(i^2 for i in y)<=n]))
A.sort()
T=[sum(i^2 for i in y) for y in cartesian_product_iterator([[0..ceil(sqrt(n))], [0..ceil(sqrt(n))], [0..ceil(sqrt(n))]])]
[x for x in A if x in T] # Tom Edgar, Mar 24 2016
CROSSREFS
Difference of A214515 and A270781.
Difference of A214515 and A004215.
Sequence in context: A050436 A038868 A214515 * A330591 A302167 A376209
KEYWORD
nonn
AUTHOR
Griffin N. Macris, Mar 23 2016
STATUS
approved