[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A004215
Numbers that are the sum of 4 but no fewer nonzero squares.
(Formerly M4349)
97
7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79, 87, 92, 95, 103, 111, 112, 119, 124, 127, 135, 143, 151, 156, 159, 167, 175, 183, 188, 191, 199, 207, 215, 220, 223, 231, 239, 240, 247, 252, 255, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343
OFFSET
1,1
COMMENTS
Lagrange's theorem tells us that each positive integer can be written as a sum of four squares.
If n is in the sequence and k is an odd positive integer then n^k is in the sequence because n^k is of the form 4^i(8j+7). - Farideh Firoozbakht, Nov 23 2006
Numbers whose cubes do not have a partition as a sum of 3 squares. a(n)^3 = A134738(n). - Artur Jasinski, Nov 07 2007
A002828(a(n)) = 4; A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
There are infinitely many adjacent pairs (for example, 128n + 111 and 128n + 112 for any n), but never a triple of consecutive integers. - Ivan Neretin, Aug 17 2017
These numbers are called "forbidden numbers" in crystallography: for a cubic crystal, no reflection with index hkl such that h^2 + k^2 + l^2 = a(n) appears in the crystal's diffraction pattern. - A. Timothy Royappa, Aug 11 2021
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 261.
E. Poznanski, 1901. Pierwiastki pierwotne liczb pierwszych. Warszawa, pp. 1-63.
W. Sierpiński, 1925. Teorja Liczb. pp. 1-410 (p. 125).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 4181.
LINKS
Richard T. Bumby, Sums Of Four Squares
International Union of Crystallography, Cubic structures.
Louis J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
Saburô Uchiyama, A five-square theorem, Publ. Res. Math. Sci., Vol 13, Number 1 (1977), 301-305.
Steve Waterman, Missing numbers formula
Eric Weisstein's World of Mathematics, Square Number
FORMULA
a(n) = A055039(n)/2. - Ray Chandler, Jan 30 2009
Numbers of the form 4^i*(8*j+7), i >= 0, j >= 0. [A.-M. Legendre & C. F. Gauss]
Products of the form A000302(i)*A004771(j), i, j >= 0. - R. J. Mathar, Nov 29 2006
a(n) = 6*n + O(log(n)). - Charles R Greathouse IV, Dec 19 2013
Conjecture: The number of terms < 2^n is A023105(n) - 2. - Tilman Neumann, Sep 20 2020
EXAMPLE
15 is in the sequence because it is the sum of four squares, namely, 3^2 + 2^2 + 1^2 + 1^2, and it can't be expressed as the sum of fewer squares.
16 is not in the sequence, because, although it can be expressed as 2^2 + 2^2 + 2^2 + 2^2, it can also be expressed as 4^2.
MAPLE
N:= 1000: # to get all terms <= N
{seq(seq(4^i * (8*j + 7), j = 0 .. floor((N/4^i - 7)/8)), i = 0 .. floor(log[4](N)))}; # Robert Israel, Sep 02 2014
MATHEMATICA
Sort[Flatten[Table[4^i(8j + 7), {i, 0, 2}, {j, 0, 42}]]] (* Alonso del Arte, Jul 05 2005 *)
Select[Range[120], Mod[ #/4^IntegerExponent[ #, 4], 8] == 7 &] (* Ant King, Oct 14 2010 *)
PROG
(PARI) isA004215(n)={ local(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 22 2006
(PARI) isA004215(n)= n\4^valuation(n, 4)%8==7 \\ M. F. Hasler, Mar 18 2011
(Haskell)
a004215 n = a004215_list !! (n-1)
a004215_list = filter ((== 4) . a002828) [1..]
-- Reinhard Zumkeller, Feb 26 2015
(Python)
def valuation(n, b):
v = 0
while n > 1 and n%b == 0: n //= b; v += 1
return v
def ok(n): return n//4**valuation(n, 4)%8 == 7 # after M. F. Hasler
print(list(filter(ok, range(344)))) # Michael S. Branicky, Jul 15 2021
(Python)
from itertools import count, islice
def A004215_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7, count(max(startvalue, 1)))
A004215_list = list(islice(A004215_gen(), 30)) # Chai Wah Wu, Jul 09 2022
CROSSREFS
Complement of A000378.
Cf. A000118 (ways to write n as sum of 4 squares), A025427.
Sequence in context: A349233 A335512 A369375 * A206906 A374805 A295669
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com)
Additional comments from Jud McCranie, Mar 19 2000
STATUS
approved