[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A276156
Numbers obtained by reinterpreting base-2 representation of n in primorial base: a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1 + A276154(a(n)).
54
0, 1, 2, 3, 6, 7, 8, 9, 30, 31, 32, 33, 36, 37, 38, 39, 210, 211, 212, 213, 216, 217, 218, 219, 240, 241, 242, 243, 246, 247, 248, 249, 2310, 2311, 2312, 2313, 2316, 2317, 2318, 2319, 2340, 2341, 2342, 2343, 2346, 2347, 2348, 2349, 2520, 2521, 2522, 2523, 2526, 2527, 2528, 2529, 2550, 2551, 2552, 2553, 2556, 2557, 2558, 2559, 30030, 30031
OFFSET
0,3
COMMENTS
Numbers that are sums of distinct primorial numbers, A002110.
Numbers with no digits larger than one in primorial base, A049345.
FORMULA
a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1+A276154(a(n)).
Other identities. For all n >= 0:
a(n) = A276085(A019565(n)).
A049345(a(n)) = A007088(n).
A257993(a(n)) = A001511(n).
A276084(a(n)) = A007814(n).
A051903(a(n)) = A351073(n).
MATHEMATICA
nn = 65; b = MixedRadix[Reverse@ Prime@ Range[IntegerLength[nn, 2] - 1]]; Table[FromDigits[IntegerDigits[n, 2], b], {n, 0, 65}] (* Version 10.2, or *)
Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[n, 2], {n, 0, 65}] (* Michael De Vlieger, Aug 26 2016 *)
PROG
(Scheme, two versions)
;; Almost standalone, requiring only A000040:
(define (A276156 n) (let loop ((n n) (s 0) (pr 1) (i 1)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) s (* (A000040 i) pr) (+ 1 i))) (else (loop (/ (- n 1) 2) (+ s pr) (* (A000040 i) pr) (+ 1 i))))))
;; One using memoization-macro, implementing the given recurrence:
(definec (A276156 n) (cond ((zero? n) n) ((even? n) (A276154 (A276156 (/ n 2)))) (else (+ 1 (A276154 (A276156 (/ (- n 1) 2)))))))
(Python)
from sympy import prime, primorial, primepi, factorint
from operator import mul
def a002110(n): return 1 if n<1 else primorial(n)
def a276085(n):
f=factorint(n)
return sum([f[i]*a002110(primepi(i) - 1) for i in f])
def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) # after Chai Wah Wu
def a(n): return 0 if n==0 else a276085(a019565(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 23 2017
(PARI) A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); }; \\ Antti Karttunen, Feb 03 2022
CROSSREFS
Complement of A177711.
Subsequences: A328233, A328832, A328462 (odd bisection).
Conjectured subsequences: A328110, A380527.
Fixed points of A328841, positions of zeros in A328828, A328842, and A329032, positions of ones in A328581, A328582, and A381032.
Positions of terms < 2 in A328114.
Indices where A327860 and A329029 coincide.
Cf. also table A328464 (and its rows).
Sequence in context: A257262 A293397 A059590 * A144705 A028733 A028789
KEYWORD
nonn,base,changed
AUTHOR
Antti Karttunen, Aug 24 2016
STATUS
approved