OFFSET
0,2
FORMULA
From Peter Bala, Aug 23 2022: (Start)
Equals Sum_{n >= 1} 1/( (1 + sqrt(2))^(2*n)*Pell(2*n) ), where Pell(n) = A000129(n).
Equals Sum_{n >= 1} 1/( (1 + sqrt(2))^(4*n) - 1).
A more rapidly converging series for the constant is 2*sqrt(2)*Sum_{n >= 1} x^(n^2)*(1 + x^n)/(1 - x^n), where x = 17 - 12*sqrt(2) = 0.029437.... See A000005. (End)
EXAMPLE
sum = 0.0883138821525759032178529847253...
MAPLE
x := 17 - 12*sqrt(2) :
evalf(2*sqrt(2)*add( x^(n^2)*(1 + x^n)/(1 - x^n), n = 1..8), 100); # Peter Bala, Aug 23 2022
MATHEMATICA
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2015
STATUS
approved