[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A253286
Square array read by upward antidiagonals, A(n,k) = Sum_{j=0..n} (n-j)!*C(n,n-j)* C(n-1,n-j)*k^j, for n>=0 and k>=0.
7
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 8, 3, 1, 0, 73, 44, 15, 4, 1, 0, 501, 304, 99, 24, 5, 1, 0, 4051, 2512, 801, 184, 35, 6, 1, 0, 37633, 24064, 7623, 1696, 305, 48, 7, 1, 0, 394353, 261536, 83079, 18144, 3145, 468, 63, 8, 1
OFFSET
0,8
FORMULA
A(n,k) = k*n!*hypergeom([1-n],[2],-k) for n>=1 and 1 for n=0.
Row sums of triangle, Sum_{k=0..n} A(n-k, k) = 1 + A256325(n).
From Seiichi Manyama, Feb 03 2021: (Start)
E.g.f. of column k: exp(k*x/(1-x)).
T(n,k) = (2*n+k-2) * T(n-1,k) - (n-1) * (n-2) * T(n-2, k) for n > 1. (End)
From G. C. Greubel, Feb 23 2021: (Start)
A(n, k) = k*(n-1)!*LaguerreL(n-1, 1, -k) with A(0, k) = 1.
T(n, k) = k*(n-k-1)!*LaguerreL(n-k-1, 1, -k) with T(n, n) = 1.
T(n, 2) = A052897(n) = A086915(n)/2.
Sum_{k=0..n} T(n, k) = 1 + Sum_{k=0..n-1} (n-k-1)*k!*LaguerreL(k, 1, k-n+1). (End)
EXAMPLE
Square array starts, A(n,k):
1, 1, 1, 1, 1, 1, 1, ... A000012
0, 1, 2, 3, 4, 5, 6, ... A001477
0, 3, 8, 15, 24, 35, 48, ... A005563
0, 13, 44, 99, 184, 305, 468, ... A226514
0, 73, 304, 801, 1696, 3145, 5328, ...
0, 501, 2512, 7623, 18144, 37225, 68976, ...
0, 4051, 24064, 83079, 220096, 495475, 997056, ...
Triangle starts, T(n, k) = A(n-k, k):
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 13, 8, 3, 1;
0, 73, 44, 15, 4, 1;
0, 501, 304, 99, 24, 5, 1;
MAPLE
L := (n, k) -> (n-k)!*binomial(n, n-k)*binomial(n-1, n-k):
A := (n, k) -> add(L(n, j)*k^j, j=0..n):
# Alternatively:
# A := (n, k) -> `if`(n=0, 1, simplify(k*n!*hypergeom([1-n], [2], -k))):
for n from 0 to 6 do lprint(seq(A(n, k), k=0..6)) od;
MATHEMATICA
A253286[n_, k_]:= If[k==n, 1, k*(n-k-1)!*LaguerreL[n-k-1, 1, -k]];
Table[A253286[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
PROG
(PARI) {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^j*binomial(n-1, j-1)/j!))} \\ Seiichi Manyama, Feb 03 2021
(PARI) {T(n, k) = if(n<2, (k-1)*n+1, (2*n+k-2)*T(n-1, k)-(n-1)*(n-2)*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
(Sage) flatten([[1 if k==n else k*factorial(n-k-1)*gen_laguerre(n-k-1, 1, -k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
(Magma) [k eq n select 1 else k*Factorial(n-k-1)*Evaluate(LaguerrePolynomial(n-k-1, 1), -k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
CROSSREFS
Main diagonal gives A293145.
Sequence in context: A370506 A184182 A085771 * A344499 A284799 A111106
KEYWORD
tabl,easy,nonn
AUTHOR
Peter Luschny, Mar 24 2015
STATUS
approved