[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A259669
a(0)=0, a(1)=1, a(n) = min{5 a(k) + (5^(n-k)-1)/4, k=0..(n-1)} for n>=2.
1
0, 1, 6, 11, 36, 61, 86, 211, 336, 461, 586, 1211, 1836, 2461, 3086, 3711, 6836, 9961, 13086, 16211, 19336, 22461, 38086, 53711, 69336, 84961, 100586, 116211, 131836, 209961, 288086, 366211, 444336, 522461, 600586, 678711, 756836, 1147461, 1538086, 1928711
OFFSET
0,3
COMMENTS
A generalization of Frame-Stewart recurrence is a(0)=0, a(1)=1, a(n)=min{q*a(k) + (q^(n-k)-1)/(q-1), k=0..(n-1)} where n>=2 and q>1. The sequence of first differences is q^A003056(n). For q=2 we have the sequence A007664. The current sequence is generated for q=5.
LINKS
Jonathan Chappelon and Akihiro Matsuura, On generalized Frame-Stewart numbers, arXiv:1009.0146 [math.NT], 2010.
FORMULA
a(n) = min {5*a(k) + (5^(n-k)-1)/4 ; k < n}.
a(n) = sum(5^A003056(i), i=0..n-1).
MATHEMATICA
a[n_] := a[n] = Min[ Table[ 5*a[k] + (5^(n-k) - 1)/4, {k, 0, n-1}]]; a[0] = 0; Table[a[n], {n, 0, 60}]
CROSSREFS
Sequence in context: A219500 A166702 A130667 * A108698 A002570 A038265
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 02 2015
STATUS
approved